AMORPHOUS AND NANOCRYSTALLINE MATERIALS FOR APPLICATIONS AS HARD AND SOFT MAGNETS

Reiko Sato

Technische Universität Wien, Vienna, Austria

Collaborators:
Roland Grössinger
Djoko Triyono
Herbert Sassik
Markus Schönhart
Gerald Badurek
Joao Paulo Sinnecker
Outline

1) Comparison soft- and hard magnetic materials
2) Basic properties of magnetic materials
3) Production methods of amorphous and nanocrystalline materials
4) Modeling
5) Applications
Soft magnetic materials

Hard magnetic materials

Magnetic characterization: hysteresis loop

- **Range of irreversible magnetization**
- **Range of rotation magnetization**
- **Range of approach to saturation**
- **Initial permeability range**

Coercivity: reverse field needed to drive the magnetization to zero after being saturation

Remaining magnetization when the driving field is dropped to zero
Soft magnetic material
Coercive force low

Hard magnetic material
Coercive force High (higher than 80 kA/m)
<table>
<thead>
<tr>
<th>Property</th>
<th>Soft magnetic material</th>
<th>Hard magnetic material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation magnetisation</td>
<td>As high as possible (0.8 – 2T)</td>
<td>As high as possible (0.2 – 1.5T)</td>
</tr>
<tr>
<td>Coercive force</td>
<td>As low as possible (< 100 A/m)</td>
<td>As high as possible (80 – 400 kA/m)</td>
</tr>
<tr>
<td>Permeability</td>
<td>As high as possible 10000 – 200000</td>
<td>Not important</td>
</tr>
<tr>
<td>Losses</td>
<td>As low as possible, frequency dependence</td>
<td>Area of loop \cong stored energy as high as possible</td>
</tr>
<tr>
<td>Shape of loop</td>
<td>Important because determines application</td>
<td>Important and should be rectangular</td>
</tr>
<tr>
<td>Remanence</td>
<td>Not important</td>
<td>as high as possible</td>
</tr>
<tr>
<td>Conductivity</td>
<td>Determines ac-losses</td>
<td>Important for magnetising procedure</td>
</tr>
</tbody>
</table>
Development of NEW magnetic materials for applications:

♥ intrinsic magnetic properties:

- saturation magnetization
- Curie temperature
- magnetocrystalline anisotropy

for large M_s and T_C ⇒ use of Fe or Co (or Fe-Co) alloys (Slater Pauling curve).

♥ extrinsic magnetic properties:

- grain size, shape and orientation,
- defect concentrations, compositional inhomogeneities,
Relation between coercivity and grain size

Hard

Soft

Amorphous alloys ⇒ not any long-range atomic order ⇒ atomic positions do not have crystalline periodic order (frozen liquid).

Nanocrystalline alloys:

term ‘nanocrystalline alloy’ ⇒ grain diameters range from 1±50 nm
Properties of various soft ferromagnetic materials

Schwarz, ANMM 2003, IASI, Rumenia
Comparison of the magnetic properties for different hard magnetic materials
Hard magnetic materials: Nd-Fe-B - energy product above 450 kJ/m³ achieved!

Soft magnetic materials: Fe-Si (about 3% Si) still most important.

Further improvement - new compounds!

Hard magnetic materials: nanocrystalline, nanocomposite materials
Soft magnetic materials: Amorphous materials: ribbon, wire and bulk materials
Nanocrystalline materials
Soft magnetic amorphous materials:

Composition: $\text{TM}_{1-x}(\text{M, NM, T})_x$; where x is around 0.2

$\text{TM} =$ Co, Ni, or Fe; $\text{M} =$ B, P, Si, etc
$\text{NM} =$ Cu, Ag, Au, etc; $\text{T} =$ Zr, Nb, Hf, Ta, etc.

It exists hard magnetic amorphous materials?

Bulk: $\text{Nd}_{60}\text{Fe}_{30}\text{Al}_{10}$; $\text{Nd}_{60}\text{Fe}_{20}\text{Co}_{10}\text{Al}_{10}$ amorphous?
Sof magnetic nanocrystalline materials

nanocrystals + a residual amorphous phase

Magnetisation

Applied field

exchange coupling between magnetic nanograins through amorphous matrix)
Examples of soft nanocrystalline materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Composition</th>
<th>Nanoparticles</th>
<th>M_s (T)</th>
<th>T_C (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINEMET</td>
<td>$Fe_{73.5}Si_{13.5}Nb_{3}Cu_{1}B_{9}$</td>
<td>α-FeSi;FeSi(DO$_3$)</td>
<td>1.0-1.2</td>
<td><770</td>
</tr>
<tr>
<td>NANOPERM</td>
<td>$Fe_{88}Zr_{7}Cu_{1}B_{4}$</td>
<td>α-Fe(BCC)</td>
<td>1.5-1.8</td>
<td>770</td>
</tr>
<tr>
<td>HITPERM</td>
<td>$Fe_{44}Co_{44}Zr_{7}Cu_{1}B_{4}$</td>
<td>α-FeCo(BCC); α'-FeCo(B2)</td>
<td>1.5-2.1</td>
<td>>965</td>
</tr>
</tbody>
</table>
Relationship between permeability, μ_e (at 1 kHz) and saturation polarisation for soft magnetic materials

(A. Makino et al. Mat-Trans JIM 1995;36:924)
AC magnetic response

- eddy current loss \Rightarrow loss appearing as heat in the core material with consequent V^2/R.

$R_{\text{amorphous materials}} > R_{\text{nanocrystalline materials}} > R_{\text{crystalline materials}}$

Structure sensitive magnetic properties depend on:
- defect concentration, impurities, second phases,
- atomic order,
- thermal history, etc.
In amorphous materials:

Non Magnetic properties: mechanical, corrosion, resistivity

Time dependence of the initial susceptibility (disaccommodation) and the stress dependence of the permeability ⇒ sensitive to quench rate (PECO-Project; R. Sato Turtelli et al. Phys. Rev. B, 63 (2001) 094427-1-8).

Production of amorphous, bulk amorphous and nanocrystalline materials
Melt Spinner: To form the amorphous phase, the material must be cooled from melting temperature T_m, to the glass transition T_g, without any crystallization.

Schematic and machine of a melt-spinning apparatus used to produce amorphous metallic ribbons (Siemens)
Other methods of the production of amorphous materials

- Melt spinning, rapidly solidification
- sputtering
- splat cooling
- vapour deposition
- atomisation
- mechanical alloying or milling
Production of bulk amorphous materials

♥ conventional solidification with slower cooling rate due to large glass forming ability

♦ Ex.: Fe-Al-Ga-P-C-B ⇒ 200 μm thickness, 2 mm diameter

Causes of the high thermal stability of the bulk amorphous alloys:

♠ More efficient dense random packing of constituents with different atomic sizes among P, C, and B.

♣ Higher barriers to formation of Fe-B and Fe-C compounds due to Ga additions which are soluble in Fe but non miscible with B or C.
Experimental observations in bulk amorphous alloys

Fe-Al-Ga-P-C-B-Si

Relative resistance measured in situ on the ribbon as a function of time during JH experiment as obtained with different current densities.

Coercive field as function of the current density of Fe\textsubscript{73}Al\textsubscript{5}Ga\textsubscript{2}P\textsubscript{11-x}C\textsubscript{5}B\textsubscript{4}Si\textsubscript{x} (x = 0, 1, 3) samples obtained at room temperature.
Production methods of magnetic nanocrystalline materials:

Generally, initially one obtains material in the amorphous state and subsequently crystallised by annealing.
Diagram for developing a nanocrystalline soft and hard magnetic materials from an amorphous precursor (adapted from M.E. McHenry et al., Progress in Materials Science 44 (1999) 291-433)
Fe$_{73.5}$Cu$_1$Nb$_3$Si$_{13.5}$B$_9$
VAC E 4229/2
f = 5 kHz
$H_{ac} = 0.05$ A/m

annealing 1 h
Temperature dependence of the coercivity of FINEMET obtained from annealing the amorphous ribbons produced with different quenching rates.
Grain size dependence

Herzer considers:

a) grain size $D <$ exchange length L_{ex}

b) effective anisotropy is average over several grains – reduced anisotropy

c) characteristic volume whose linear dimension is the magnetic exchange length, $L_{ex} \sim (A/K)^{1/2}$. (Volume $\propto L_{ex}^3$).

d) N grains, with random easy axes, within a volume of L_{ex}^3 to be exchange coupled.

In these conditions:
The effective anisotropy is: \(K_{\text{eff}} = K/N^{1/2} \) and the number of grains in this exchange coupled volume is: \(N = (L_{\text{ex}}/D)^3 \). Then:

\[
K_{\text{eff}} = KD^{3/2} \sim \left(\frac{K_{\text{eff}}}{A} \right) \sim \left(\frac{K^4 D^6}{A^3} \right)
\]

Since \(H_c \) can be taken as proportional to \(K_{\text{eff}} \):

\[
H_c \sim H_K \sim D^6
\]

\[
H_c = p_C \frac{K_1^4 D^6}{J_s A^3}
\]

\[
\mu_i = p_\mu \frac{J_s^2 A^3}{\mu_0 K_1^4 D^6}
\]

For sufficiently small nanocrystals \(\Rightarrow \) superparamagnetic
Permanent magnets: ⇒ Two types:
♦ single nanocrystalline hard magnetic phase
♦ nanocomposites: known as spring magnets (hard + soft magnetic phases).

⇒ exchange coupling between magnetic nano-grains through soft magnetic grains.
Spring magnets (hard + soft magnetic phases): M_s(soft) > M_s(hard).

Enhancement of remanence due to: exchange coupling + high M_s(soft)

Remanence increases however coercivity decreases.

After Davies *at al*
Exchange coupling leads to a remanence enhancement!

Theoretical limit for the maximum energy product, \((BH)_{\text{max}}\) is:

\[
(BH)_{\text{max}} \leq \frac{J_s^2}{4 \mu_0}
\]

Remanence for a polycrystalline magnet - non-interacting isotropic, uniaxial grains:

\[
J_r = J_s \frac{\int_{0}^{2\pi} \int_{0}^{\pi} \cos \theta \sin \theta d\theta d\phi}{\int_{0}^{2\pi} \int_{0}^{\pi} \sin \theta d\theta d\phi} = \frac{1}{2} J_s
\]

Nanocrystalline material due to exchange coupling - for isotropic material \(J_r/J_s > 0.5\) is possible!
Nanocrystalline materials

For nanocrystalline material the way how the small grains are coupled is of great importance for the understanding of the remanence enhancement. For grains of nano-size different exchange length have to be considered:

Exchange length due to external field: \(\ell_H = \sqrt{\frac{2A}{H \cdot \mu_0 \cdot M_s}} \)

Exchange length due to crystal energy: \(\ell_K = \sqrt{\frac{A}{K}} \)

Exchange length due to stray fields: \(\ell_s = \sqrt{\frac{2\mu_0 A}{\left(\mu_0 \cdot M_s\right)^2}} \)

Which type of “exchange length” is more important, it depends on the material.
Hard magnetic materials

Modeling: Finite element modeling for nanocomposite to obtain a remanence enhancement

- Two-phase magnet with residual amorphous phase
 - Mean grain size = 10 nm
 - Width of intergranular phase = 3.2 nm
 - Reduction of exchange constant = 0.2

\[\frac{J_r}{J_s} = 0.73 \] exceeds limit for non-interacting grains
Advantages of nanocomposite over conventional isotropic magnets

Stability of the powders both in physical and chemical aspects

Availability of relatively fine particles sizes for molding small parts and for injection molding process,

Negligible long-term structural losses,

Tailoring of magnetic properties
Applications of soft magnetic materials

Power devices (low losses):
- power transformers
- magnetic shields
- acoustic delay lines
- tensile stress transducers
- transverse filters.

Electronics (M_s, μ, eddy current and magnetoelastic properties):
- 400 Hz power transformers;
- Inductive components for switched mode power supplies;
- Magnetic shields;
- Magneto-elastic transducers;
- Magnetic heads for data storage applications;
- Magnetic springs;
- Acoustic-magnetic systems.
(a) 60 Hz distribution
(b) Ribbon wound cruciform distribution transformer applications (Suzuki et al, Mat. Sci. Eng. 1994)
Acoustic-magnetic systems
Applications of nanocomposites

- as magnetic component of resin-bonded magnets

- in motor: e.g. internal permanent magnet type of rotor; multi-pole rotor used in a stepping motor.

- Medical applications

- in oil pollution in the sea
Prof. P. C. Morais (Univ. Brasilia) 2003