Synthese and magnetic properties of new polymetallic complexes of coordination.

Margot KALISZ
Introduction:
definition of the photomagnetism by electron transfer.

I. Photomagnetism of a 3D network: Cu$^{II}_2$[MoIV(CN)$_8$.7,5H$_2$O
1) Presentation.
2) Photomagnetic cycles at 60 K, tests of relaxations.
3) Photomagnetic cycles at 10 K.

I. Photomagnetism of a new cluster: [CuII(tren)]$_6$[MoIV(CN)$_8$][ClO$_4$]$_8$.16H$_2$O
1) Presentation.
2) Description of the photomagnetic effect.

III. Study of relaxation.
1) Tests of follow-up of the magnetic signal versus time at a given T.
2) Study of relaxation by thermal cycles.

Conclusions

Project of thesis
Under the direction of Prf Maria Vaz (iq-ufrj) and Prf Miguel Novak (if-ufrj)
new compounds with interesting magnetic properties.
Introduction

Definition of the photomagnetism:

influence of an electromagnetic irradiation on the magnetic properties of a material
Possible mechanisms on a molecular scale:

- Spin transition, centered on the metal: example of the Fe($^\text{II}$)(d_6)

 \[
 \begin{align*}
 \text{LS} & : S = 0 \\
 \text{HS} & : S = 2
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{e}_g & \\
 \text{t}_2g &
 \end{align*}
 \]

- Electronic transfer: example of the Rb$_{0.54}$Co$_{1.21}$[Fe(CN)$_6$].17H$_2$O

 \[Fe^{\text{II}}\text{-CN-Co}^{\text{III}}\]

* A. Bleuzen, M. Verdaguer, JACS, 2001, 122, 6648.
Photomagnetism of a network 3D: \(\text{Cu}^{\text{II}}_2\text{[Mo}^{\text{IV}}(\text{CN})_8] \cdot 7,5\text{H}_2\text{O}\) *

1) Presentation

IVCT à 450 nm

Irradiation 5 h in 60 K:
(power of the laser \(\approx 3 \text{ mW.cm}^{-2} \))

\[\chi_M T \text{ (cm}^3\text{.mol}^{-1}\text{.K)} } \]

- befor \(\hbar V \)
- after \(\hbar V \)
- after \(\hbar V \) and annealing in 300 K

the curves befor and after irradiation meet in 180 K.

the curves befor and after irradiation + thermal annealing are identical.
2) Magnetic cycles in 60 K, tests of relaxations.

Irradiations in 60 K

- the 4 irradiations are effective
 - no fatigability of the process of photo-conversion

- 160 K: incomplete relaxation
- 180 K and 200 K: relaxations at the same point, but not complete
 - surprising bad reversibility
 cf. courbe $\chi T = f(T)$
3) photomagnetic cycles at 10 K.
Irradiation 1 h at 10 K

\[\chi_T \approx 0.14 \text{ cm}^3\text{mol}^{-1}\text{K} \]

\(\chi_T \) after annealing \(\approx \chi_T \) before \(h \nu \)

- \(\Delta \chi_T \approx 0.14 \text{ cm}^3\text{mol}^{-1}\text{K} \)
- \(\chi_T \) after annealing \(\approx \chi_T \) before \(h \nu \)

non fatigability

good reversibility
Conclusions of the 1st part:

Conditions of good reversibility: \(h \nu \) 1 h in 10 K

in this case: the photo-conversion obtained is insufficient to study of relaxation

notice: the xT curve obtained after irradiation looks like that obtained for compounds organized in clusters

→ Idea: to obtain systems organized in clusters
 - with a more important photomagnetism
 - allowing a simulation of magnetic properties

\[\text{Coord}_{\text{Mo}} = 8 \]

ideal stoechiometry: 1 Mo / 8 Cu

This compound does not exist

but the compound 1 Mo / 6 Cu was synthesized by the group of Pr. Michel Verdaguer
Photomagnetism of a new cluster:
$[\text{Cu}^{II}(\text{tren})]_6[\text{Mo}^{IV}(\text{CN})_8][\text{ClO}_4]_8 \cdot 16\text{H}_2\text{O}$

1) Presentation

ligand tren

![Diagram of the cluster complex]

- Cu^{II}
- N
- Mo^{IV}
- C
2) Description of the photomagnetic effect.

- Irradiation (406 nm) à 10 K

\[
\chi_{MT} = 2.3 \text{ cm}^3\text{.mol}^{-1}\text{.K}
\]

before irradiation

after irradiation 15 h at 10 K

after irradiation + annealing à 300 K

\[M_{\text{before } h} \approx M_{\text{after } h + \text{annealing}} \]

Reversibility of the photo-induced process

\[\Delta \chi T = 2.3 \text{ cm}^3\text{.mol}^{-1}\text{.K} \]

Photomagnetic effect important
- short irradiation in 10 K, non-fatigability of the process

before irradiation
simulation « 6 S=1/2 »

after irradiation 1 h à 10 K
sim. 57 % « S=3 » + 43 % « 6 S=1/2 »
simulation « S=3 »

Reversibility and no fatigability of a photo-induced process

good candidate for the study of the relaxation
study of the relaxation

1) Tests of follow-up of magnetic signal versus time with T given.

at each temperature tested, stability of x_T ⇒ relaxation during the increase in T?
2) Study of relaxation by thermal cycles.

Relaxation from a cycle to the following

Points of meeting • at the end of each cycle

relaxation takes place during the increase in the T
relaxation during the 1st passage only

\[\hbar \nu \]

\[406 \text{ nm} \]

\[T (\text{K}) \]

\[10 \text{k} 100 \text{k} 150 \text{k} 200 \text{k} 250 \text{k} 300 \text{k} \]

\[\chi_M (\text{cm}^3 \text{mol}^{-1} \text{K}) \]

\[H = 20000 \text{ Oe} \]

- After each increase in the T, the signal is stable
- Creation of magnetic centers with a distribution of \(T_{\text{relaxation}} \)

\[\hbar \nu_1 \]

\[A \leftrightarrow B_1 + B_2 + B_3 \ldots \]

\[\Delta_{B_1}, \Delta_{B_2}, \Delta_{B_3} \ldots \]
Conclusions

3D network Cu\textsubscript{2}Mo: photomagnetism reversible (h\nu 1 h à 10 K), but too weak photoconversion

To increase the efficacy of the irradiation:
- approach top-down: nano-materials
 (too small quantities for the moment)
- approach bottom-up
 → analogy with the molecular clusters

Cluster Cu\textsubscript{6}Mo: - photomagnetism reversible and important,
 but relaxation non-conventional: independent of the time.
 - stability of the signal with T given.

\[\begin{align*}
 &A \xrightarrow{\text{hv}} B \xrightarrow{\text{annealing with } T_1} B^* \\
 &\text{annealing with } 300 \text{ K}
\end{align*} \]

Example: \(T_1 = 150 \text{ K} \)
\(\Delta \chi T = 1,1 \text{ cm}^3\text{mol}^{-1}\text{K} \)