Schichtvorbehandlung und Haftung

Wesentliche Voraussetzungen für eine optimalen Verbund zwischen Schicht und Substrat:

Anforderungen an das Substrat:

- + partikelfrei, staubfrei
- + fettfrei
- + trocken
- + frei von stark adsorbierten Verunreinigungen

Anforderungen an die Schicht:

- + mittlere Teilchenenergien beim Aufprall
- + weitgehende Spannungsfreiheit
- + Abschirmung schädlicher Umwelteinflüsse

Schichtvorbehandlung: Partikelfreiheit

Partikel entstehen durch:

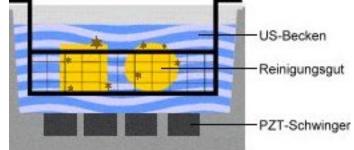
- + Sägen
- + Brechen
- + Schleifen/Polieren
- + andere Bearbeitungsmethoden

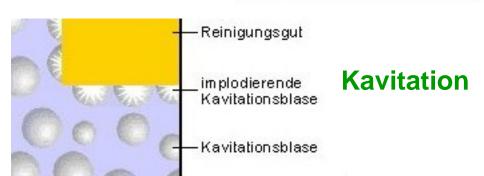
Partikelentfernung und Vermeidung durch:

- + Abspülen
- + Wischen
- + Abblasen mit Pressluft oder Kaltgas
- + bearbeiten im Reinraum

Zu achten ist auf:

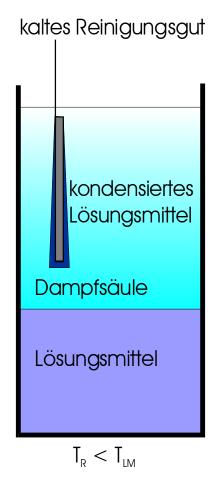
- + sorgfältiges Handling (Handschuhe)
- + Partikel von Spülmittel/Wischtüchern
- + Verunreinigungen in Pressluft/Kaltgas

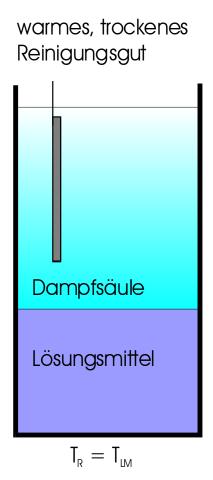

Schichtvorbehandlung: Entfettung


Ultraschallreinigung

Ultraschalbad mit organischem Lösungsmittel befüllt

Reinigungsprinzip





Achtung:
Ultraschallreinigung
kann zur Bildung von
Partikelklumpen führen
(stehende Wellen!)

Schichtvorbehandlung: Entfettung, Trocknung

Dampf- oder Gasphasenreinigung

T_R = Temperatur Reinigungsgut **T**_{LM} = Temperatur Lösungsmitteldampf

Lösungsmittel:

Aceton

Chem. Formel: CH₃(CO) CH₃ Siedepunkt: 56.5°C

Ethanol

Chem. Formel: C₂H₅OH Siedepunkt: 78,5°C

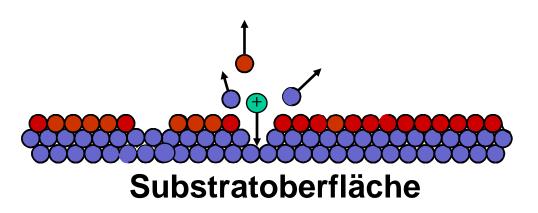
Methanol

Chem. Formel: CH₃OH Siedepunkt: 64,7°C

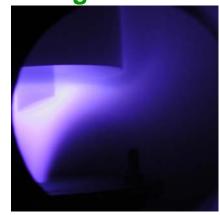
Schichtvorbehandlung: Trocknung

Lagerung im Trockenschrank

Bei der Lagerung im Trockenschrank ist zu beachten, dass es bei oxidationsanfälligen Proben nicht zur Bildung von Oxidschichten kommt.

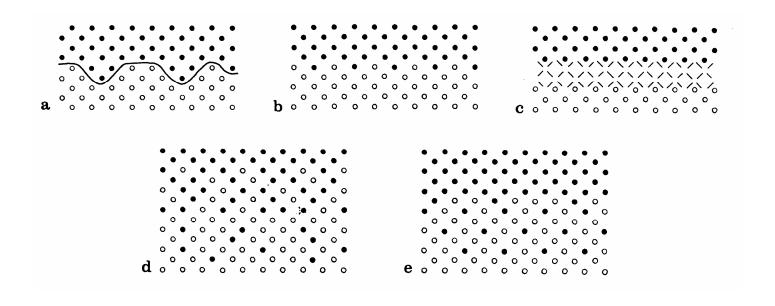

Optimal ist eine Lagerung in der Umgebung des Kochpunktes von Wasser. Das verhindert die Kondensation von Wasser.

Schichtvorbehandlung im Vakuum

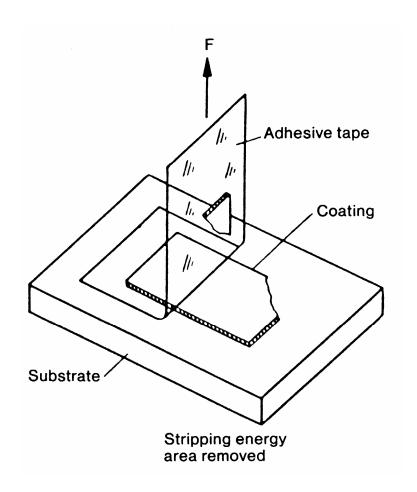

Im Vakuum kann das Substrat endgültig gereinigt werden:

- + Ausheizen
- + Sputterreinigen mit Inertgas
- + Chemische Aktivierung mit Reaktivplasmen

Sputterreinigung:



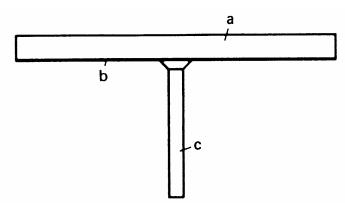
Ionenätzen einer Röntgenanode


- + Loslösung locker gebundener Verunreinigungen
- + Endgültiges Abtragen adsorbierter Wasserfilme

Schichthaftungsmechanismen

- a) Mechanische Verzahnung
- b) Monoschicht/Monoschicht
- c) Chemische Bindung
- d) Diffusion
- e) Pseudodiffusion durch erhöhten Energieeintrag

Haftungsmessung: Klebeband

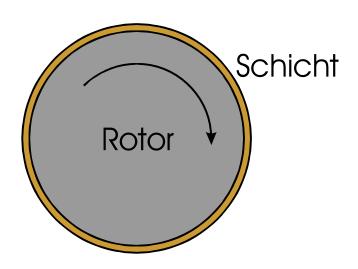


Beim Klebebandtest ist die Abzugskraft F genormt. Der selbe Klebebandtyp muss verwendet werden, wenn Ergebnisse für verschiedene Proben verglichen werden sollen.

Haftungsmessung: Gitterschnitt

Gitterschnitt- kennwert	Beschreibung	Bild
Gt 0	Die Schnittränder sind vollkommen glatt, kein Teilstück des Anstriches ist abgeplatzt.	-
Gt 1	An den Schnittpunkten der Gitterlinien sind kleine Splitter des Anstriches abgeplatzt; abgeplatzte Fläche etwa 5% der Teilstücke.	
Gt 2	Der Anstrich ist längs der Schnittränder und/oder an den Schnittpunkten der Gitterlinien abgeplatzt; abgeplatzte Fläche etwa 15% der Teilstücke.	
Gt 3	Der Anstrich ist längs der Schnittränder teilweise oder ganz in breiten Streifen abgeplatzt und/oder der Anstrich ist von einzelnen Teilstücken ganz oder teilweise abgeplatzt; abgeplatzte Fläche etwa 35% der Teilstücke.	
Gt 4	Der Anstrich ist längs der Schnittränder in breiten Streisen und/oder von einzelnen Teilstücken ganz oder teilweise abgeplatzt; abgeplatzte Fläche etwa 65% der Teilstücke.	
Gt 5	Abgeplatzte Fläche mehr als 65% der Teilstücke.	-

Haftungsmessung: Abziehtest


- a) Substrat
- b) Schicht
- c) Aufgeklebter Stempel

Achtung: folgende Unwägbarkeiten können auftreten:

- + Reaktion Kleber/Schicht
- + Eindiffusion des Klebers in die Schicht
- + Nach Eindiffusion: Reaktion Kleber/ Substrat
- + MangeInde Haftung Kleber/Schicht

Haftungsmessung: Ultrazentrifuge

Vorteile:

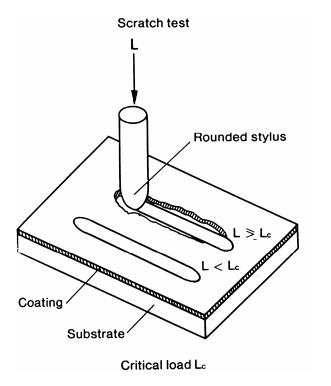
- + Quantitative Abzugskräfte
- + Keine Klebungen

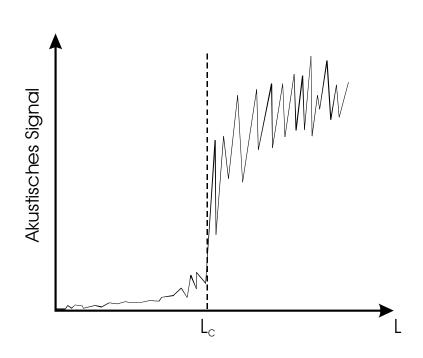
Nachteile:

- + Nur rotationsymmetrische Substrate
- + Übertragbarkeit auf andere Geometrien fraglich
- + Schichtdickengleichmässigkeit fraglich
- + Mechanische Eigenschaften des Grundkörpers nicht frei wählbar

Abzugskraft A:

$$A = 4\pi^2 N^2 R \rho d$$


R = Rotorradius

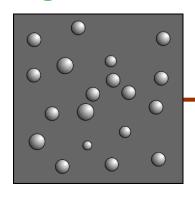

d = Schichtdicke

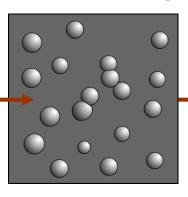
N = Umdrehungen pro s

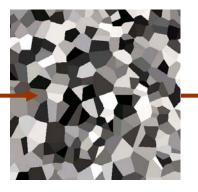
 ρ = Dichte der Schicht

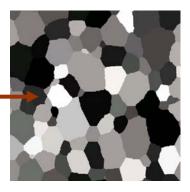
Haftungsmessung: Scratch Test

Vorteile:

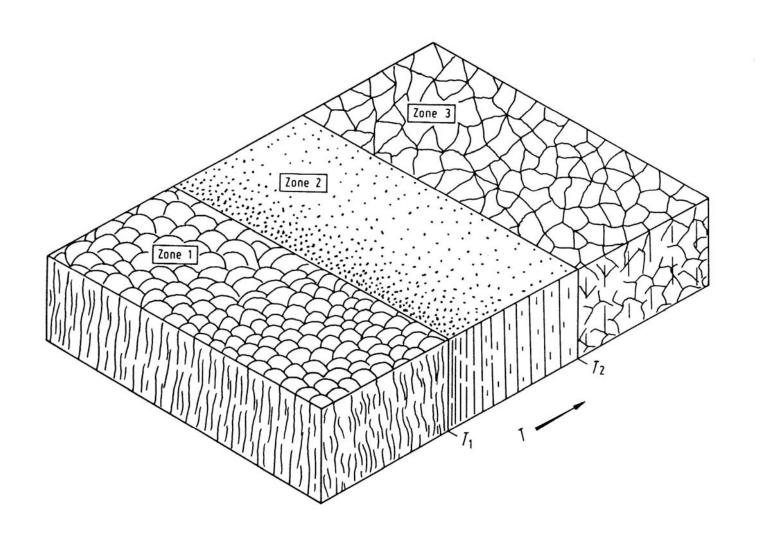

- + Hoher Informationsgehalt
- + Quantitative Werte für L_c


Nachteile:

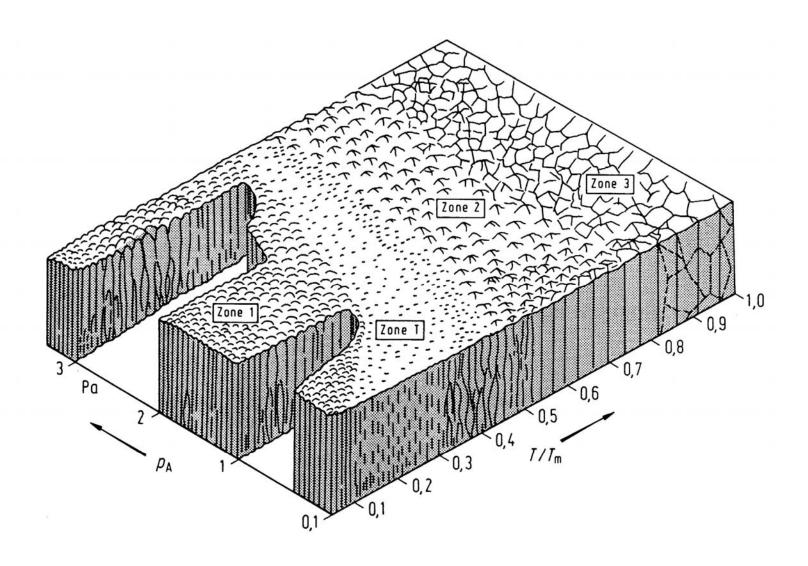

- + Nicht zerstörungsfrei
- + Schicht muss spröde sein, um Brüche zu ermöglichen


Strukturzonenmodelle

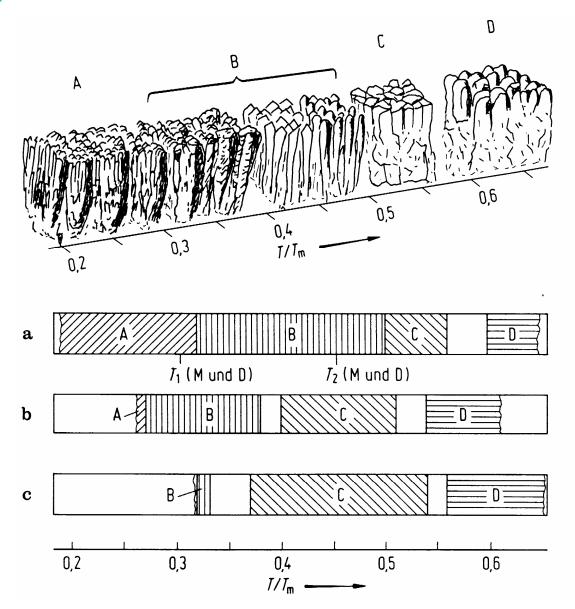
Ergebnis der Wachstumsphasen einer Schicht



Nukleation am Substrat


Teilweise Koaleszenz und Grenzflächenbildung Totale Koaleszenz und Bildung eines Polykristalls Wachstum der Körner des Polykristalls

Strukturzonenmodelle liefern den qualitativen Schichtaufbau in Abhängigkeit von den Beschichtungsparametern.


Movchan-Demchishin: Aufdampfprozesse

Thornton: Sputterprozesse

Ionenplattieren

Zonen und Wachstumsmechanismen

Zone	Mechanismus	Merkmal
1: T/T _M <0,2	Abschattung	Fibern, Poren
T: T/T _M <0,4	Teilchenenergie	Nanokörner
2: T/T _M <0,8	Oberflächendiffusion	Säulige Kristalle
3: T/T _M >0,8	Volumsdiffusion	3d - Körner

Schichtdicke

Ideal

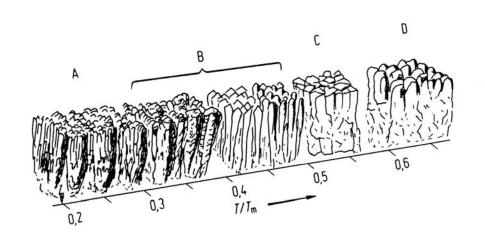
Real

a

r D

Schicht

Substrat


Schichtdickenmessung: Gravimetrie I

$$\left\langle \mathbf{d} \right\rangle = \frac{\mathbf{m}}{\rho_{\mathbf{S}} \cdot \mathbf{A}}$$

d = Schichtdicke

 ρ_s = Dichte

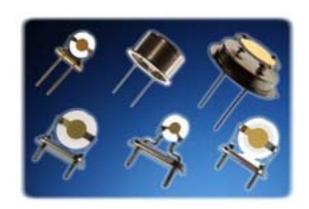
A = Substratfläche

Achtung:

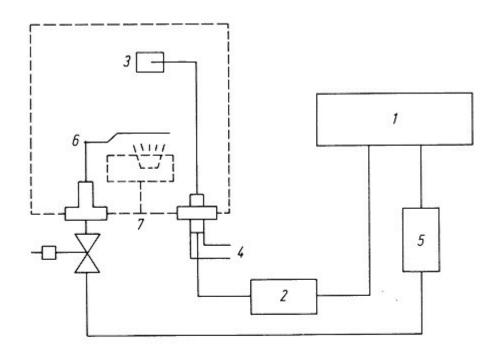
Die Dichte der Schicht, ρ_S , ist meist nicht ident mit der Dichte des Bulkmaterials, ρ_D .

Schichtdickenmessung: Gravimetrie II

Methoden der Wägung:

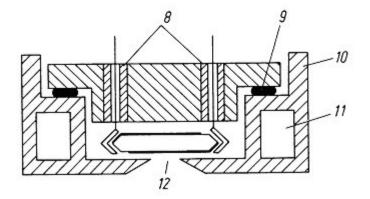

Konventionelle Waagen

Messgenauigkeit: 0,1 µg = 10⁻¹⁰ kg Ex-situ-Methodik Artefaktanfällig (z. B. Oxidation)



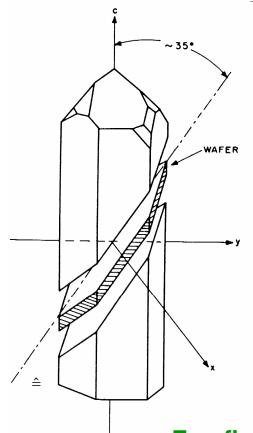
Schwingquarz-Schichtdickenmessung

Messgenauigkeit: <0.1ML In-situ-Methodik Muss kalibriert werden



Schwingquarz - Schema

Schaltschema


- 1 Steuergerät; DA/AD-Wandler
- 2 Oszillator
- 3 Messkopf
- 4 Wasserkühlung
- **5 Shuttersteuerung**
- 6 Shutter
- 7 Aufdampfquelle

Aufbau des Messkopfes

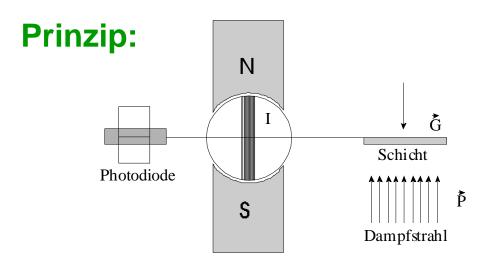
- 8 Elektrische Zuführungen
- 9 Dichtung
- 10 Wassergekühlter Cu-Block
- 11 Kühlkanal
- 12 Apertur

Schwingquarz - Temperaturstabilisierung

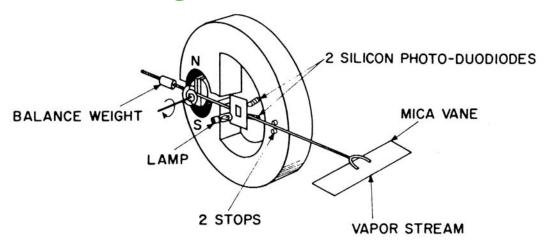
A/T-Schnitt von SiO₂:

 $\Delta f = \beta f \Delta t$

 β =-10⁻⁶ K⁻¹

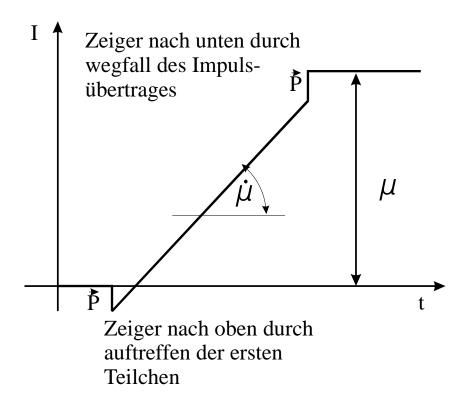

f=6MHz:

 $\Delta f/\Delta t = -6Hz/K$


Empfindlichkeiten im A/T-Schnitt

f ₀ [MHz]	Dicke d. Qu. [mm]	df/dμ[Hz/μg/cm²]	df/dD(r=1)[Hz/ Å]
1	1.67	2.2	0.022
6	0.28 (Grenze)	81.5	0.818

In-Situ – Mikrowägung I



Realisierung:

In-Situ – Mikrowägung II

Messresultat:

P...Im puls

μ...Rate der Massenbelegung

μ...Massenbelegung

Anwendung:

Kalibrierung anderer Messverfahren, da diese Methode absolute Messwerte liefert. Der Strom erlaubt einen direkten Rückschluss auf die deponierte Masse.

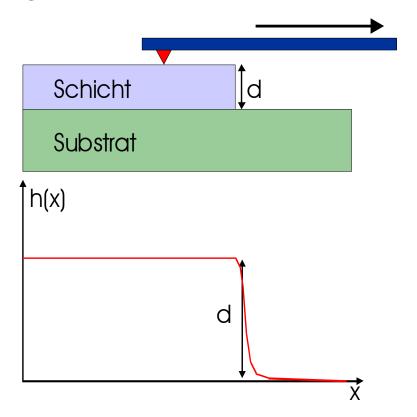
Dosierte Massenzufuhr

Konstanter Materialfluss von der Quelle:

$$a = \left(\frac{dm}{dt}\right) / A = \left(\frac{\rho \cdot dD \cdot A}{dt}\right) / A = \rho \left(\frac{dD}{dt}\right) = const.$$

$$D = \frac{at}{\rho}$$

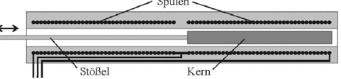
D...Schichtdicke

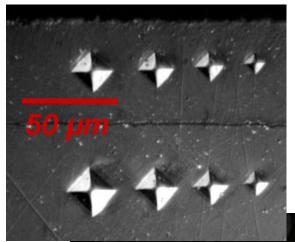

a...Massefluss

ρ...Dichte der Schicht

Die Methode ist nur anwendbar, wenn der Materialabtrag von der Quelle über lange Zeiten konstant ist (z. B. Sputtern).

Direkte Methoden I


Stylus-Profilometer


Messprinzip: induktiver Wegaufnehmer.

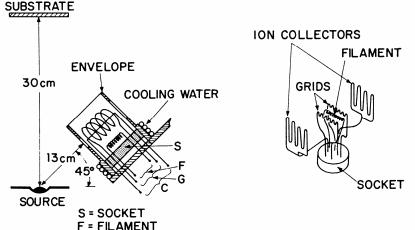
Liefert auch Rauhigkeitsschriebe.

Direkte Methoden II

Licht- und Elektronenmikroskop: Querschnitte

Sputterschicht: Querschliff (Lichtmikroskop)

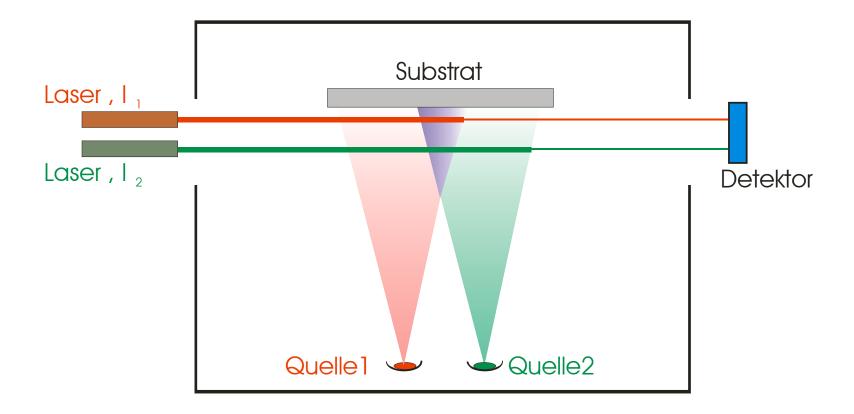
30 µm


Sputterschicht: Querschliff (REM)

1 µm

T-behandelte Cu-Schicht (TEM)

Ratenmessung mittels Ionisation



G = GRID C = ION COLL. Sehr geringe Teilchenzahlen sind messbar, da äusserst geringe Ströme detektiert werden können.

Der Dampfstrahl wird nur geringfügig beeinflusst.

Ratenmessung mittels Laseranregung

Keine Wechselwirkung mit dem Teilchenstrahl. Messung direkt vor dem Substrat möglich. Bei geeigneten Laserwellenlängen können die Depositionsraten mehrerer Quellen gleichzeitig gemessen werden.

Weitere Methoden

Elektrische Messgrössen

- + Widerstand
- + Kapazität: Substrat/Schicht/Sensor -> Kondensator
- + Wirbelstrom

Magnetismus

Weitere Methoden

- + β-Elektronen-Rückstreuung
- + Elektronenstrahlschwächung im TEM
- + Röntgen-Fluoreszenz (RFA):

 Qualitätskontrolle (Zerstörungsfrei)
- + Tracer-Methoden