
Repetition: Structure Zone Models



Repetition: Film Growth Mechanisms

Zone Mechanism Char. feature

1: T/TM<0,2

T: T/TM<0,4

2: T/TM<0,8

3: T/TM>0,8

Shadowing

Particle energy

Surface diffusion

Volume diffusion

Fibers, pores

Nano grains

Columnar crystlites

3d - Grains



Repetition: Stress/Film Structure

Intrinsic stress:

Iσ Intrinsic stresses are a direct consequence of the film 
structure and of the deposition conditions.

Tensile stress
Compressive stress
Variable

Tensile stress

Compressive stress



Repetition: Stress/Film Growth
In-Situ-measurements by the cantilever method:

Influence of the film thickness on σσσσI

Compressive stress
Coalescence

Type I:
T  large, mobility smallM

Type II:
T  small, mobility largeM

Volume reduction by
recrystallization after 
coating leads to tensile
stresses

COATING

Tensile stress

0
t
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Electronic Properties

The properties of the electronic system of a 
meterial exert an influence on:

+ Conductivity
+ Optical properties
+ Magnetic properties
+ Adsorption and adhesion

For thin film systems these properties are furthe 
modified by the high ration of surface to volume.



Material Classes and Conductivity

Different material classes may be distinguished by the 
band model. Basically this model describes  the  
transition from covalent to metallic bonding. 

conduction band

conduction band
conduction band

valence band valence band valence band

Insulator Semiconductor Conductor



Electronic Components and Thin Films
By thin film technology the following electronic 
components can be realized:

+ Interconnect

+ Thin film resistors

+ Condensers

+ Diodes

+ Transistors

+ MOSFETS

Metal

Insulator

Semiconductor, doping A

Semiconductor, doping B



Electrical Conductivity of Metals

Microscopic description: Drude law
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Macriscopic description: Ohm’s law

R
UI = l = Current

U = Voltage
R = Resistivity

j = Current density
E = E-field
σσσσ = Conductivity
n = Number of charges
e = Elementary charge
me = Electron mass
ττττ = mean collision time



Areal Resistivity

Geometry and electrical resistivity:

bd
lR
⋅

ρ= ρρρρ = Specific resistivity

An important quantity in thin film technology is the 
areal resistivity: for l=b (quadratic base area)

R=R =
d
ρ

Is valid independent from the size of the square. 



Measurement of the Areal Resistivity
Four point methods:

linear quadratic

R =
I
U532,4 ⋅ R =

I
U06,9 ⋅

+ The electrode distance has to be much smaller than the film area.
+ Pre-factors result from electrode geometry. 
+ Four pount probes are usually calibrated.



Theory of Conductivity
Drude theory:
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j = Current density
E = E-field
σσσσ = Conductivity
n = Number of charges
e = Elementary charge
me = Electron mass
ττττ = Mean collision time

The central point of the Drude theory is the

Mean collision time ττττ



The Mean Collision Time
The mean collision time can be calculated from 
"Matthiessens rule":

ττττG = Scattering at lattice atoms
ττττK = Scattering at grain boundaries
ττττV = Scattering at impurities

Important for the magnitude of conductivity is 
therefore the kind and number of defects, at which 
electrons can be scattered.
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Also interfaces of each kind can be considered as 
defects. This automatically yields the dependence of 
the conductivity on film thickness!



Conductivity and Transport Theory

For a mathematically correct and also for a 
quantum mechanically sound calculation of 
the conductivity of solid bodiesor thin films 
Boltzmann’s transport theory has to be 
applied.



Conductivity Without E-field
General approach for the calculation of the 
conductivity in metals:
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Structure of the Fermi Distribution

Ungestörte Fermi-Verteilung:
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Calculation of the Current Density I
No E-Field means no disturbance of theFermi 
distribution:
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Calculation of the Current Density II
E-field means disturbance of the Fermi distribution by 
collisions:
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rr ≠

The calculation of the disturbed distribution function  
f(v) is the core of Boltzmann’s transport theory!



The Boltzmann Equation
Descriptions of changes in f by collisions
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Collisions and Relaxation

Ansatz for the collision term:

This yields:
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This means: after a disturbance of f0 by a collision the 
disturbed function f exponentially approaches f0 again.



The Disturbed Distribution Function f

Ansatz:

Insertion into  Boltzmann equation:

f f A= +0 A...Disturbance, independent on v

r rv f A
eE
m

f A
v

f A fr
x

∇ / + / −
+

= − / + − /( )
( )

( )0
0

0 0
1∂

∂ τ

x

0

v
f

m
eEA

∂
∂τ=

x

0
0 v

f
m
eEff

∂
∂τ+= The derivate of f0 to v has a 

profound influence on the 
calculation of the current density j!



Calculation of the Current Density III

Calculation of the current density with f insteadf of f0:

Insertion into expression for j:
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Calculation of jx:



Calculation of the Current Density IV

Solution of                  :vd
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After some further transformations (appendix) one 
obtains:
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Comparison: Drude Model/Transport Theory

Drude:

EE
h3

vme8j 3

3
f

2
e

2 rrr
σ=τπ=

Boltzmann:

EE
m2

nej
e

2 rrr
⋅σ=τ=

∫

∫







π=






=

==

v,R

3
f33

3

0 h
mv

3
8vxdd

h
mf2

V
1

dn
V
1n

rr

EE
m

nej
e

2 rrr
⋅σ=τ=jDrude=1/2jBoltzmann



Transport Theory for Thin Films
Bulk: Film:
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The Interfaces at z=0 and z=D are additional scattering 
centers for electrons!



Scattering at Interfaces
Specular: Completely 

diffuse:

Specular reflexion does noct change the conductivity 
in comparison to the bulk!
The real case is a superposition of specular and diffuse 
scattering. 



Current Density for Thin Films I

Ansatz:

Calculation analogous to previous yields (appendix):

f f A= +0 A...Disturbance, A=A(z)
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From this equation for j the average from z=0 to z=D 
has to be calculated to gain the conductivity of a film 
with the thickness D.



Current Density for Thin Films II

Total diffuse reflexion:
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k = D/λλλλ0, 
λλλλ0 = mean free pathn of electrons in metal
λλλλ0 = approx. 10 – 40 nm at room temperature



Conductivity of Thin Films I

Total diffuse reflexion:

Partially directed reflexion (fraction p):

Simplifications

k>>1 0<k<<1
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Conductivity of Thin Films II



Conductivity Approximations
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Real thin Film Systems

Ideal: Real:

d
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Experiment:

kontdis σ<<σ
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Justification:

Diskontinuity
Thermionic emission
Field emission
Tunnel effect

Substrate

Film d



Conductivity and Film Thickness - Real
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Application: Thin Film Resistors I

Region of resistivity:

100 ΩΩΩΩ – 100MΩΩΩΩ

Covered by:

+ Film thickness variation
+ Choice of material

Voraussetzungen: 

+ Low temperature coefficient
+ Low cost (bulk good!)



Application: Thin Film Resistors II


