Repetition: Epitaxy

Epitaxy is the deposition of layers, which are monocrystalline in large regions

- Homoepitaxy:
 Substrate material = film material
- Heteroepitaxy:
 Substrate material ≠ film material

Repetition: Heteroepitaxy I

Epitactic relation:

- Substrate material
- Film material

Van-der-Waals epitaxy:

The interaction between substrate material and film material is so weak, that film atoms can arrange themselves in a crystallographically favorable manner.

Repetition: Heteroepitaxy II

High temperature epitaxy:

The crystallographically favorable arrangement of the atoms is reached by a high substrate temperature.

Low temperature epitaxy :

The crystallographically favorable arrangement of the atoms is reached by local defect structures

- Vicinal surfaces
- Dendritic Islands

Repetition: Growth Modes

Growth modes:

A: Substrate material B: Film material

Frank-Van der Merwe: layer by layer $W_{AB} > W_{BB}$

Volmer-Weber: islands, $W_{AB} < W_{BB}$

Stranski-Krastanov: layer/island, $W_{AB} > W_{BB}$ stress relief by 3d islands

While the Frank-van der Merwe and Volmer-Weber Growth modes lead to mostly stress free films, in the Stranski-Krastanov-mode significant stresses are induced in the first growth phases.

Repetition: Stress/Film Growth

Detailed mechanism:

Lattice Mismatch ∆:

$$\Delta = \frac{a - b}{a} \cdot 100[\%]$$

Film, lattice constant b

Pseudomorphic transition zone

Substrate, lattice constant a

Repetition: Roughness Types

Repetition: Shadowing Peaks grow faster than valleys

- + Formation of columnar structures (a)
- + Pore formation in combination with surface diffusion (b)

(a)

Repetition: Roughness Values

R_a-value: mean absolute deviation

$$\mathbf{R}_{a} = \frac{1}{N} \sum_{i=1}^{N} \left| \overline{\mathbf{h}} - \mathbf{h}_{i} \right|$$

R_q- or RMS-value: mean quadratic deviation

$$R_{q} = R_{RMS} = RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\overline{h} - h_{i})^{2}}$$

Repetition: Correlation Functions

Non normalized quantities	Normalized quantities
Autocovariance function	Autocorrelation function
$R(\tau) = \langle h(x) \cdot h(x+\tau) \rangle dx$	$\rho(\tau) = \mathbf{R}(\tau) / \mathbf{R}(0)$
Structure function	
$S(\tau) = \left\langle [h(x) - h(x + \tau)]^2 \right\rangle$ $S(\tau) = 2R_q^2 [1 - \rho(\tau)]$	

Note: All heigth values are measured from the mean heigth \overline{h} .

Repetition: Correlation Length ξ **Surface profile**

Autocovariance function

Within ξ the profile exhibits similar heigth values.

Periodicities are present, if $R(\tau)$ exhibits maxima at $\tau \neq 0$.

Film Structure and Film Properties

The film structure influences:

- + Density
- + Mechanical properties
- + Electric properties
- + Magnetic properties
- + Electronic properties

Application Profiles

Depending on the application a certain film structure can be advantageous or disadvantageous:

- + Tool \implies dense, fine grained
- + Biolog. material \implies porous, soft
- + Elektronics \implies dense, monocrystalline
- + Therm. barriers \implies porous, hard

Structure Zone Models

Growth phases of a coating

Nucleation on substrate

Partial coalescence and interface formation Total coalescence and polycrystal formation Growth of polycrystal grains

Structure zone models yield a qualitative image of film growth, morphology and crystallography in dependence on the coating parameters.

Movchan-Demchishin: Evaporation

Thornton: Sputtering

Ion Plating

Zones and Growth Mechanisms

Zone	Mechanism	Char. feature
1: T/T _M <0,2	Shadowing	Fibers, pores
T: T/T _M <0,4	Particle energy	Nano grains
2: T/T _M <0,8	Surface diffusion	Columnar crystlites
3: T/T _M >0,8	Volume diffusion	3d - Grains

Kinds of stresses:

$$\sigma = \sigma_{\rm MECH} + \sigma_{\rm T} + \sigma_{\rm I}$$

Mechanical stress:

Generated by clamping of the substrate and subsequent unclamping

Thermal stress:

$$\sigma_{\rm T} = E_{\rm S}(\alpha_{\rm S} - \alpha_{\rm U})(T_{\rm B} - T_{\rm M})$$

E_s ... Elastic modulus film

 α_{s} ... CTE film

 α_{U} ... CTE substrate

T_B ... Deposition temperature

T_M ... Measurement temperature

Generated by the different coefficients of Thermal Expansion (CTE) of substrate and coating

Stresses and Film Structure

Intrinsic stress:

 σ_{I} Intrinsic stresses are a direct consequence of the film structure and of the deposition conditions.

Intrinsic Stresses: Sputtering

Stress Measurement: Fundamentals

Curved substrate:

- E_s ... Elastic modulus substrate
- v_s ... Poisson-number substrate
- d_s ... Thickness of substrate
- d_F ... Film thickness

R_{S1}, R_{S2} ... Radius of curvature before and after coating, respectively

Stress Measurement: Cantilever

Geometry:

Neglections and prerequisites:

- a) lateral displacement of the cantilever
- b) vertical displacement of the cantilever (δ)
- c) low ratios Δ/H

Stresses and Film Growth I

In-Situ-measurements by the cantilever method:

Influence of the film thickness on σ_l

Stresses and Film Growth II

In-Situ-measurements by the cantilever method : Evaporation of Al

Influence of impurities in the residual gas During the evaporation process on σ_{l}

Lattice Mismatch and Self Organization I

Detailed mechanism:

Lattice Mismatch ∆:

$$\Delta = \frac{a - b}{a} \cdot 100[\%]$$

Film, lattice constant b

Pseudomorphic transition zone

Substrate, lattice constant a

Lattice Mismatch and Self Organization II Example: self organization of island positions in InAs/GaAs Multilayers:

The lattice strain in the interlayer generates a preferred nucleation position directly above an island.

Stress Measurement by X-Rays

Principle:

Measurement of the global strain of the elementary cell generated by:

- + Interstitial atoms
- + Impurities

Advantages:

- + Non-destructive
- + In Situ possible

Disadvantages:

Several other influences:

- + Lattice defects
- + Dislocations
- + Impurities
- + Foreign phases

Example: Temperature Variation

Roentgenographic stress determination at variable temperature:

