Repetition: Nucleation Rates

Simple nucleation theory of the isolated nucleus as well as rate equations yield nucleation rates I of the form:

$$I[m^{-2}s^{-1}] \cong A \cdot R^{p} e^{\frac{E}{k_{B}T_{S}}}$$

Droplet-model: $E=E(\Delta G^*) =>$ unambigousParticle-model: $E=E(i, E_i) =>$ ambigous

The exponent p can have integer or non-integer values.

Repetition: Rate Equations General

Incomplete condensation

$$\frac{dn_1}{dt} = 0 = R - \frac{n_1}{\tau_a}$$
$$\frac{d(n_x w_x)}{dt} \cong 0$$

Complete condensation

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} = \mathrm{R} - \frac{\mathrm{d}(\mathrm{n_x}\mathrm{w_x})}{\mathrm{d}t}$$

Repetition: KMC Simulation

Kinetic Monte Carlo (KMC) simulations allow the determination of

- the shape of the stable islands
- the size distribution of stable islands
- the influence of defects on nucleation

they only use the elemetary processes of film growth (deposition, surface diffusion, desorption, particle bonding) as input for the simulation of film growth.

Repetition: KMC - Principle

- Definition of event types
- Definition of relative event probabilities ("conditional probabilities")
- Choice of a particle for the execution of the event
- Determination of the time interval between specific events

Advantage: each chosen event changes the system Disadvantage: not all event types are known a

priori; algorithm is memory consuming

Repetition: KMC – Results and Trends

Variation of substrate temperature T_s

Variation of deposition rate R

R=0.5 ML/s

1ML/s

5 MI/s

E_{Diff}=0.5 eV $E_{Des}=1 \text{ eV}$ $E_{b} = 0.5 \text{ eV}$

 $T_{\rm s} = 700 \, {\rm K}$ *E*_{*Diff}=0.5* eV</sub> $E_{\text{Des}} = 1 \text{ eV}$ $E_{b} = 0.5 \text{ eV}$

Epitaxy is the deposition of layers, which are monocrystalline in large regions

- Homoepitaxy:
 Substrate meterial = film material
- Heteroepitaxy:
 Substrate material ≠ film material

Heteroepitaxy I Epitactic relation:

- Substrate material
- Film material

Van-der-Waals epitaxy:

The interaction between substrate material and film material is so weak, that film atoms can arrange themselves in a crystallographically favorable manner.

Heteroepitaxy II

High temperature epitaxy:

The crystallographically favorable arrangement of the atoms is reached by a high substrate temperature.

Low temperature epitaxy :

The crystallographically favorable arrangement of the atoms is reached by local defect structures

- Vicinal surfaces
- Dendritic Islands

Film Growth: Nucleus Shape/Wetting

γ....Surface energy O....Surface D....Vapor K....Nucleus

Film Growth: Growth Modes

Growth modes:

A: Substrate material B: Film material

Volmer-Weber: islands, $W_{AB} < W_{BB}$

Stranski-Krastanov: layer/island, $W_{AB} > W_{BB}$ stress relief by 3d islands

Characterization: e. g.: Auger-electron spectroscopy

Stress and Film Growth I

Growth modes:

A: Substrate material B: Film material

Frank-Van der Merwe: layer by layer $W_{AB} > W_{BB}$

Volmer-Weber: islands, $W_{AB} < W_{BB}$

Stranski-Krastanov: layer/island, $W_{AB} > W_{BB}$ stress relief by 3d islands

While the Frank-van der Merwe and Volmer-Weber Growth modes lead to mostly stress free films, in the Stranski-Krastanov-mode significant stresses are induced in the first growth phases.

Stress and Film Growth II

Stranski-Krastanov-growth:

- + Lattice mismatch (misfit)
- + Misfit-dislocations
- + Islands

Stress and Film Growth III

Detailed mechanism:

Lattice Mismatch ∆:

$$\Delta = \frac{a - b}{a} \cdot 100[\%]$$

Film, lattice constant b

Pseudomorphic transition zone

Substrate, lattice constant a

Film Growth: Experimental I Au on NaCI, R=0.1 nm/s

Film thickness

Film Growth: Experimental II Ag on NaCI, R=0.1 nm/s, T=100°C

(c)

(d)

Coalescence: (a) d=10 nm (b) d=10.5 nm (c) d=11 nm (d) d=11.5 nm

Film Growth: Further Steps

Further Growth: Roughness/Film Structure

The film structure is determined by the roughness of the film growth front in the different growth phases to a high degree.

For very thin layers the roughness is in the order of the film thickness and can therefore be more important than the mean layer thickness.

Roughness Types I

Stochastic roughness – Solid on Solid (SOS) model

- + Particles have to have a below nearest neighbor (NN)
- + Particles stick where they land

Roughness Types II Self similar surfaces – SOS model

+ Particles can reach energetically favorable positions (e. g. high coordination number)
+ Particle migration e. g. by surface diffusion

Roughness Types III

Ballistic aggregation – pore formation

- + Particles stick where they land
- + Particles do not have to have a below NN

Shadowing

Given initial profile and impingement angle distribution

- + Narrow impingement angle distribution:
 peaks see the same particle flow as valleys (a)
- + Wide impingement angle distribution: peaks see larger particle flow than valleys (a)

Shadowing Dominated Growth Peaks grow faster than valleys

- + Formation of columnar structures (a)
- + Pore formation in combination with surface diffusion (b)

(a)

Roughness Measurement in Real Space I Conversion of a continous heigth function to a set of discrete heigth values due to the finite lateral resolution of the measurement device.

Roughness values (vertical) may depend on the lateral resolution of the measurement device.

Roughness Measurement in Real Space II

+ Stylus profilometer:	1d
+ Scanning tunneling microscope, STM:	2d
+ Scanning force microscope, AFM:	2d
+ Optical near field microscopy, SNOM:	2d

The Feedback Principle

Example: STM

(a) absolute tip position constant(b) relative tip position constant

(a)

Roughness Measurement in Fourier Space I Scattering of visible light, X-rays or particles at outer or inner interfaces

(a) Specular reflexion(b) Diffuse reflexion(c) Signal combined from (a) and (b)

Roughness Measurement in Fourier Space II

Light Electrons Ions X-rays Synchrotron radiation

Advantages:

- + Damage free
- + not necessarily vacuum based
- Disadvantage:

+ Surface profile not unambigously reconstructible

Loss of Phase Information

Scattering basically yields the Fourier Transform of a surface \Rightarrow loss of phase information

 \Rightarrow no unambigous reconstruction of the profile possible

Quantification of Roughness I Linear profile, Sampling Interval ∆x

Quadratic scan

Mean film thickness

$$N = \left(\frac{L}{\Delta x}\right)^{2}$$
$$L_{x} = L_{y} \equiv L$$
$$\Delta x = \Delta y \equiv \Delta x$$

Quantification of Roughness II

R_a-value: mean absolute deviation

$$\mathbf{R}_{a} = \frac{1}{N} \sum_{i=1}^{N} \left| \overline{\mathbf{h}} - \mathbf{h}_{i} \right|$$

R_q- or RMS-value: mean quadratic deviation

$$R_{q} = R_{RMS} = RMS = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\overline{h} - h_{i})^{2}}$$

Quantification of Roughness III

Different profiles may have the same R_a or. RMS-values:

different periodicities

different symmetries

Shape Specific Parameters

Allow limited statements about profile shape:

Skewness Sk:

$$\mathbf{Sk} = \frac{1}{\mathbf{NR}_{q}^{3}} \sum_{i=1}^{N} \left(\mathbf{h}_{i} - \overline{\mathbf{h}}\right)^{3}$$

Sk<0: many heigth values < h Sk>0: many heigth values > h

Kurtosis K:

$$\mathbf{K} = \frac{1}{\mathbf{NR}_{q}^{4}} \sum_{i=1}^{N} \left(\mathbf{h}_{i} - \overline{\mathbf{h}}\right)^{4}$$

K: Measure of mean flank steepness

Correlation Functions

Allow detailed statements about vertical and lateral profile properties:

Point-point correlations for a discretized profile:

Therefore always N-n point pairs can be correlated within the interval

Auto Covariance Function

Discrete

$$R(X) = R(n \cdot \Delta x) = \frac{1}{N-n} \sum_{i=1}^{N-n} (h_i - \overline{h}) \cdot (h_{i+n} - \overline{h})$$

Continuum

$$R(\tau) = \frac{1}{L - \tau} \int_{0}^{L - \tau} (h(x) - \overline{h}) \cdot (h(x + \tau) - \overline{h}) dx$$

Structure Function

Discrete

$$S(X) = S(n \cdot \Delta x) = \frac{1}{N-n} \sum_{i=1}^{N-n} [(h_i - \overline{h}) - (h_{i+n} - \overline{h})]^2$$

Continuum

$$S(\tau) = \frac{1}{L-\tau} \int_{0}^{L-\tau} [(h(x) - \overline{h}) - (h(x+\tau) - \overline{h})]^2 dx$$

Connection Between $R(\tau)$ and $S(\tau)$

Normalized Autocovariance function (Autocorrelation function):

$$\rho(X) = R(X) / R(0)$$
 or $\rho(\tau) = R(\tau) / R(0)$

It is:

$$R(0) = R_{q}^{2}$$

S(\tau) = 2R_{q}^{2}[1-\rho(\tau)]

Summary Correlation Functions

Non normalized quantities	Normalized quantities
Autocovariance function	Autocorrelation function
$R(\tau) = \langle h(x) \cdot h(x+\tau) \rangle dx$	$\rho(\tau) = R(\tau) / R(0)$
Structure function	
$S(\tau) = \left\langle [h(x) - h(x + \tau)]^2 \right\rangle$ $S(\tau) = 2R_q^2 [1 - \rho(\tau)]$	

Note: All heigth values are measured from the mean heigth \overline{h} .

Correlation Length ξ **Surface profile**

Autocovariance function

Within ξ the profile exhibits similar heigth values.

Periodicities are present, if $R(\tau)$ exhibits maxima at $\tau \neq 0$.

Correlation Functions and Fourier Spectra

Result of a scattering experiment: "Power Spectral Density"

$$P(k) = \lim_{l \to \infty} \frac{1}{L \cdot (2\pi)^2} \left| \int_{-\infty}^{\infty} h(r) e^{ikr} dr \right|^2$$

$$\lambda = \frac{1}{\lambda}$$

λ ... Wavelength of a
characteristic
surface feature

 $k = 2\pi/$

P(k) ist the fourier transformed of the Autocovariance function $R(\tau)$.

$$P(k) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} R(r) e^{ikr} dr$$

A scattering experiment therefore basically yields the Autocovariance function with all related statistical quantities (ξ , R_q).