
Repetition: Gas Phase Scattering
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As a result of collisions in the gas phase two limiting 
cases can be distinguished:



Repetition: Potential Energy Surfaces
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Repetition: Binding Energies

Important binding energies
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E     , E     : Monomer-Desorptios energy (positive)
E     :           Activation energy of surface diffusion
                   (positive) 
E :              Binding energy of an  i-particle island (negativ)



Repetition: Time Scales
Lattice vibrations:
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Surface diffusion:

TS = 300 K 
kB = 1,38.10-23J/K 
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EDiff = 0,2 eV=3,2.10-20 J
Diff = 2,2.109 Hz
Diff =Diff

-1= 0.5 ns

Desorption:

SB

Des
Tk

E

0Des e



EDes = 2 eV=3,2.10-19 J
Des = 1,2.10-21 Hz(!)
Des =Des

-1= 1013 a



Repetition: Condensation Regimes

Complete condensation:
Each impinging particle remains 
on the surface because of the
extremely low desorption frequency.  
Prerequisite: TS <

Incomplete condensation:
Particles can desorb, an 
adsorption/desorption-equilibrium
is created ein (see later).
Prerequisite: TS >



Elementary Processes: Nucleation
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Nucleation frequency:

What is G?



Nucleation: Many Particle Aggregates

Particles within aggregate
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Nucleation: Continuum Approximation

Droplet-model: basics
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GPhase transition vapor (D)/solid (K):

G = G -G  < 0 => Solid state stableK D

     G= G( ,p,T ,r)= g ( ,r)+ g (p,T ,r)S O V S
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r   = Droplet radius
p  = Pressure outside the droplet
        (larger than equilibrium 
         vapor pressure)
T  = (Substrate) TempreatureS

  = surface energy of the droplet
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Thermodynamic Interpretation of G

From the thermodynamic point of view 
nucleation is a

Isothermal
Isobaric

process, bcause it proceeds at constant 
substrate temperature, TS , and cobstant 
supersaturation pressure, p. The thermodynamic 
potential to describe this type of process ist 
Gibbs’ free enthalpy, G .

G =U-TS+pV



Thermodynamic Calculation of GV
The volume contribution to G, GV , can be calculated:

G = U -U +p*v -pv -T (S -S )= K D K D S K D pv = p*v *D D

G  = G  - G  < 0K D
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Prozess

2: reversible
    sublimation/desublimation
3: isobar volume reduction
4: Condensate
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Interpretation of G
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Nucleation: The Isolated Nucleus

Assumptions: 

Only one aggregate present
Adsorption/desorption-equilibrium

What is "Adsorption/desorption-equilibrium" ? 

The number of single atoms ("monomers") at 
the substrate surface is limited by desorption 
processes and remains constant in the 
temporal average.



Adsorption/Desorption-Equilibrium
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n1 = Monomer number [m-2]
R   = Deposition rate [m-2s-1]
0 = Phonon frequency [s-1]



Isolated Nucleus: Droplet-Model

Nucleation rate of critical nuclei (radius r*):

Number of droplets with radius r:Adsorption/desorption-eq.:
Model assumptions:

Taking into account the adsorption/desorption
equilibrium:
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Supply of monomers to the
critical nucleus:

a

r*
U*=2  r*

Surface diffusion from
capture zone, with area 2  r*a
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Particle-Model: Mass Action Law (MWG)
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Stochiometric reaction: 
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KC is connected to the energy E which is set 
free or consumed by the reaction:

k1,2 = Proportionality constants
ci = Concentrations
KC = Reaction constant

cB KlnTkE 



Mass Action Law and Particle-Model
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i single particles form i-particle aggregate: 

N0 = Number of available adsorption sites
Ei = -E = Energy gain in the case of formation 

of a i-particle Aggregate
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Isolated Nucleus: Particle Model

Nucleation rate of  i+1-aggregates:

Number of i-particle aggregates:

Mass action law valid for the
formation of a i-aggregate:
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Model assumptions:
Adsorption/desorption-eq.:

Supply of monomers to the
critical nucleus:

Surface diffusion from
capture zone, with area U ai

Taking into account the adsorption/desorption
equilibrium:



Nucleation Rates: Interpretation

Simple nucleation theory yields 
nucleation rates I of the form: 

SBTk
E
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Droplet-model: E=E(G*) => unambigous
Particle-model: E=E(i, Ei ) => ambigous












2j

j1
Des

11 UU2nR
dt
dn

dn
dt

U Uj
j j 1

R =   Deposition Rate
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w  = Mean number of atoms in stable islandx

U  = Island generation, monomer capturei
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 = Number of stable islands

General Simplified

Assumptions:

Only monomers mobile
Aggregates with j<i:
sub-critical
Citical nucleus contains
i Monomers
Aggregates with x>i:
stable islands

Rate Equations
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General Simplified
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Rate Equations: Solutions

3d-growth

2d-growth 2d-growth

Incomplete condensation Complete condensation
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Island Densities: Interpretation

Rate equations yield island densities nx
of the form: 
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The exponent p is not necessarily an integer 
and is a function of the size of the critical 
nucleus, i.



Observable: Island Density nx

The solution of the rate equations allow the 
prediction or the determination of the

Size of the critical nucleus
Condensation regime
Growth mode (2d/3d)
Dependence of nx on TS
Dependence of nx on R

by the observation of nx for selectes TS and R.



Rate Equations: General Solution 

Incomplete condensation Complete condensation
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Example: Determination of Critical Nucleus Size
Sn on polycrystalline Al:

Sn

The variation of the 
deposition rate R at 
constant substrate 
temperature TS allows the 
determination of the 
critical particle number in 
the critical nucleus, i
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100 Å Sn on 1 µm Al
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The condensation regime 
can be noted due to the 
"fractional power law",
i. e. p<1.



Nucleation Scenarios

Heterogenous nucleation

Substrate

Defect

Homogenous nucleation

Substrate

Defect

T1

T2 > T1

T1
T2 > T1



Limits of Rate Equations

Rate equations allow no statement about

the shape of stable islands
the size distribution of stable islands
the influence of defects on nucleation

because they represent a "mean field theory", 
i. e. they neglect the influence of correlations 
within the  island distribution or of special 
island shapes on the local monomer density.



Kinetic Monte Carlo Simulaion I

Kinetic Monte Carlo (KMC) simulations allow 
the determination of

the shape of the stable islands
the size distribution of stable islands
the influence of defects on nucleation

they only use the elemetary processes of film 
growth (deposition, surface diffusion, desorption, 
particle bonding) as input for the simulation of 
film growth. 



Kinetic Monte Carlo Simulaion II

Definition of event types
Definition of relative event probabilities
("conditional probabilities")
Choice of a particle for the  execution of the 
event
Determination of the time interval between
specific events

Advantage: each chosen event changes the 
system

Disadvantage: not all event types are known a 
priori; algorithm is memory consuming



KMC: Principle I

Particle configurations and event types: 
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KMC: Principle II

Conditional probabilities

Event types:
Deposition:
Monomer-diff.:
Dimer-diff.:
Pentamer-diff.:

1x1,5.10-3
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1x10-7
4x0,02

Normalization to ]0,1]
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KMC: Principle III

Time step:
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r … Random number [0,1[
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KMC – Results and Trends I
Variation of substrate temperature TS

Variation of deposition rate R

R=1ML/s
EDiff =0.5 eV
EDes =1 eV
Eb = 0.5 eV

TS =700 K
EDiff =0.5 eV
EDes =1 eV
Eb = 0.5 eV
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R=0.5 ML/s 1ML/s 10 ML/s5 Ml/s



KMC – Results and Trends II
Variation of desorption energy EDes

Variation lateral bond energy Eb

TS =600 K
R=1ML/s
EDiff =0.5 eV
Eb = 0.5 eV

TS =600 K
R=1 ML/s
EDiff =0.5 eV
EDes =1 eV

EDes =0.8 eV 1 eV 5 eV1.5 eV

ELat =0.3 eV 0.5 eV 1.5 eV0.7 eV



KMC – Temperature Variation
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KMC – Rate Variation
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KMC – Island Size Distributions
TS =600K TS =700K

r r
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