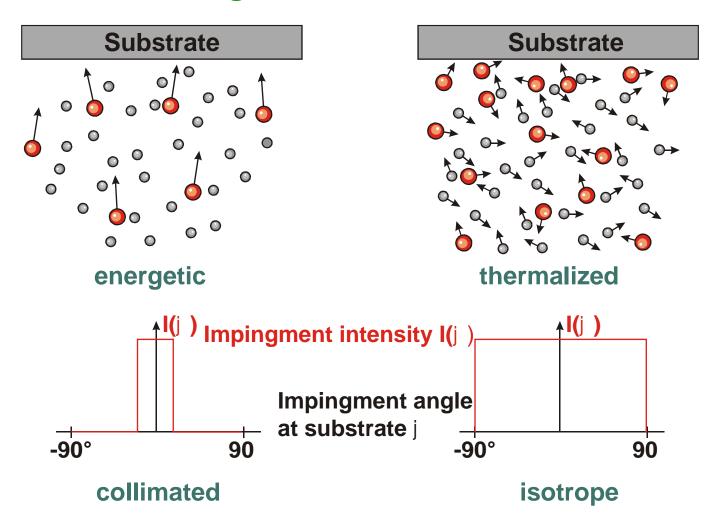
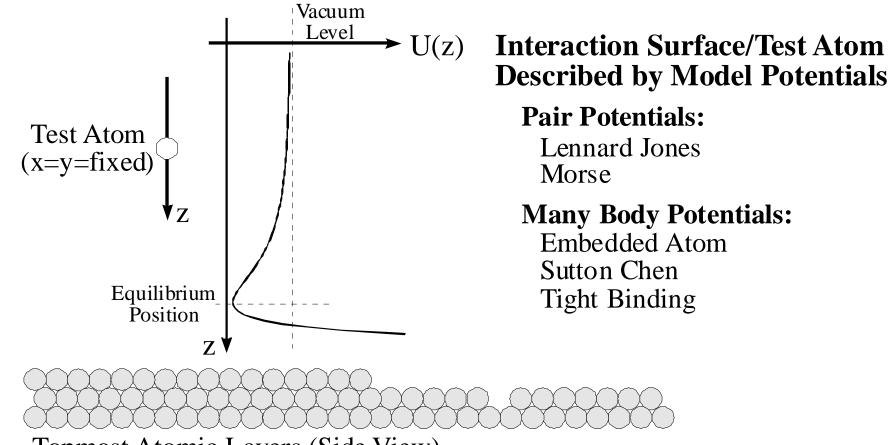
Repetition: Gas Phase Scattering

As a result of collisions in the gas phase two limiting cases can be distinguished:



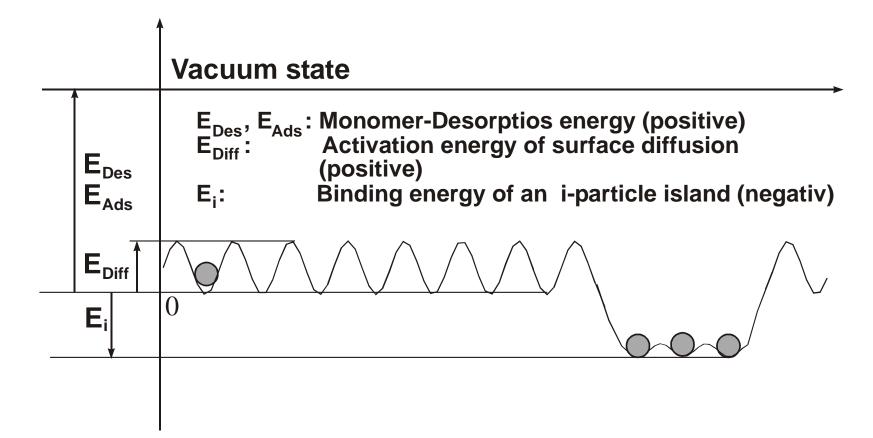
Repetition: Potential Energy Surfaces



Topmost Atomic Layers (Side View)

Repetition: Binding Energies

Important binding energies



Repetition: Time Scales

Lattice vibrations:

$$v_0 \cong 5 \cdot 10^{12} \,\mathrm{Hz}$$

Surface diffusion:

$$v_{\text{Diff}} = v_0 \cdot e^{-\frac{E_{\text{Diff}}}{k_B T_S}}$$

T_S = 300 K k_B = 1,38.10⁻²³J/K

 $E_{Diff} = 0,2 \text{ eV}=3,2.10^{-20} \text{ J}$ $v_{Diff} = 2,2.10^9 \text{ Hz}$ $\tau_{Diff} = v_{Diff}^{-1}= 0.5 \text{ ns}$

Desorption:

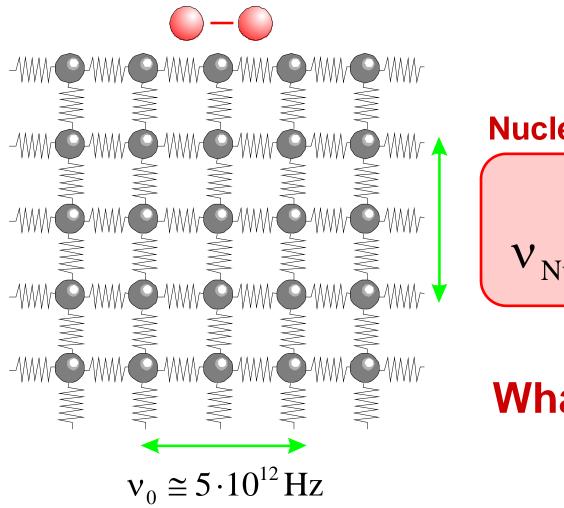
$$v_{\text{Des}} = v_0 \cdot e^{-\frac{E_{\text{Des}}}{k_B T_S}}$$

 $E_{Des} = 2 \text{ eV} = 3,2.10^{-19} \text{ J}$ $v_{Des} = 1,2.10^{-21} \text{ Hz(!)}$ $\tau_{Des} = v_{Des}^{-1} = 10^{13} \text{ a}$

Repetition: Condensation Regimes

- Complete condensation:
 Each impinging particle remains on the surface because of the extremely low desorption frequency. Prerequisite: T_s <
- Incomplete condensation: Particles can desorb, an adsorption/desorption-equilibrium is created ein (see later). Prerequisite: T_s >

Elementary Processes: Nucleation



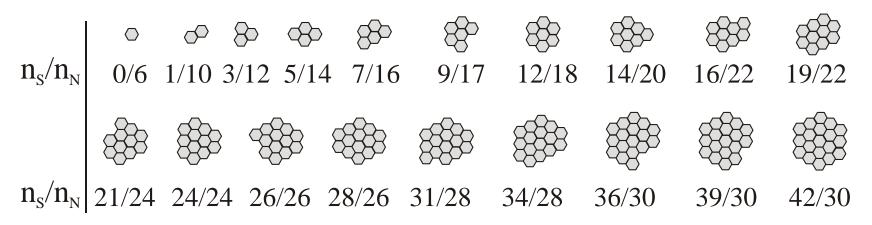
Nucleation frequency:

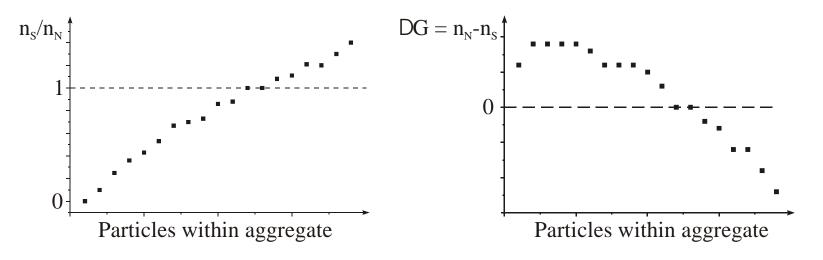
$$v_{\text{Nucl}} = v_0 \cdot e^{-\frac{\Delta G}{k_B T_S}}$$

What is ΔG ?

Nucleation: Many Particle Aggregates

2D-aggregates - hexagonal coordination





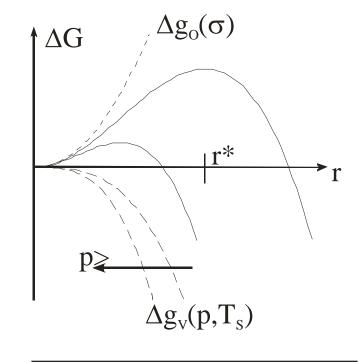
Nucleation: Continuum Approximation

Droplet-model: basics

Phase transition vapor (D)/solid (K):

 $\Delta G = G_{\rm K} - G_{\rm D} < 0 => \text{ Solid state stable}$ $\Delta G = \Delta G(\sigma, p, T_{\rm S}, r) = \Delta g_{\rm O}(\sigma, r) + \Delta g_{\rm V}(p, T_{\rm S}, r)$

- r = Droplet radius
- p = Pressure outside the droplet
 (larger than equilibrium
 vapor pressure)
- $T_s = (Substrate)$ Tempreature
- σ = surface energy of the droplet



$$\Delta G = \sigma r^2 + \Delta G_v(p, T_s) r^3$$

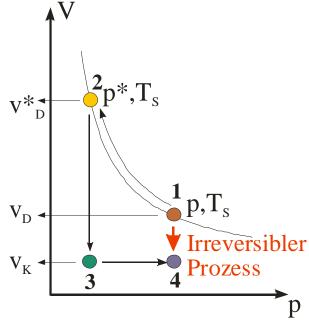
Thermodynamic Interpretation of ΔG

From the thermodynamic point of view nucleation is a

- Isothermal
- Isobaric

process, bcause it proceeds at constant substrate temperature, T_s , and cobstant supersaturation pressure, p. The thermodynamic potential to describe this type of process ist Gibbs' free enthalpy, G.

Thermodynamic Calculation of ΔG_V The volume contribution to G, ΔG_v , can be calculated:



1: supersaturated vapor

2: reversible

sublimation/desublimation

3: isobar volume reduction

4: Condensate

$$G = U - T S + pV$$

$$d'Q = dU - d'A = dU + pdV$$

$$\Delta S = d'Q/T_{S}$$

$$\Delta G = G_{K} - G_{D} < 0$$

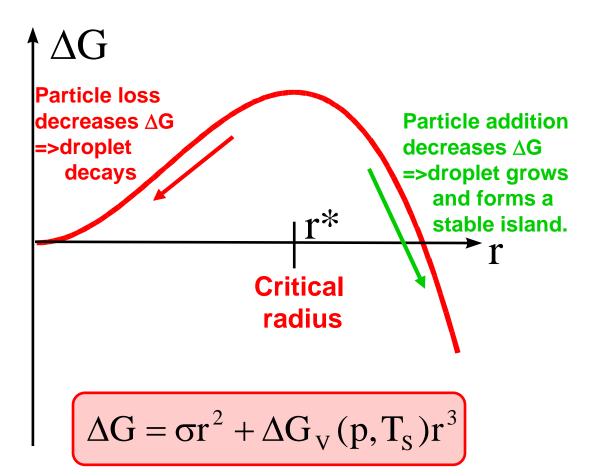
$$\Delta G = U_{K} - U_{D} + p^{*}v_{K} - pv_{D} - T_{S}(S_{K} - S_{D}) = \begin{bmatrix} pv_{D} = p^{*}v_{D}^{*} \\ pv_{D} = \Delta U + p^{*}v_{K} - p^{*}v_{D}^{*} - T_{S} \Delta S$$

$$\Delta S = \frac{1}{T_{S}} \left(\Delta U + p^{*}v_{K} - p^{*}v_{D}^{*} + \int_{v_{D}}^{v_{F}} pdV \right)$$

$$\Delta G = -\int_{v_{D}}^{v_{F}} pdV = -RT_{S} \int_{v_{D}}^{v_{F}} \frac{dV}{V} = -RT \ln \frac{v^{*}}{v_{D}} = -RT \ln \frac{p}{p^{*}}$$

$$\Delta G_{V} = \frac{\Delta G}{V} = \frac{RT}{N_{L}V_{Atom}} \ln \frac{R_{des}}{R} = \frac{k_{B}T_{S}}{V_{Atom}} \ln \frac{R_{des}}{R}$$

Interpretation of ΔG



$$\Delta G_{V}(p,T_{S}) = -\frac{k_{B}T_{S}}{V_{Atom}} ln\left(\frac{p}{p^{*}}\right) = \frac{k_{B}T_{S}}{V_{Atom}} ln\left(\frac{R_{Des}}{R}\right)$$

Nucleation: The Isolated Nucleus

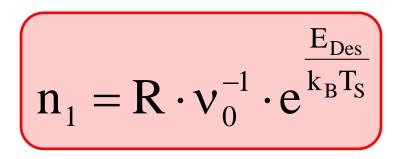
Assumptions:

- Only one aggregate present
- Adsorption/desorption-equilibrium

What is "Adsorption/desorption-equilibrium" ?

The number of single atoms ("monomers") at the substrate surface is limited by desorption processes and remains constant in the temporal average. Adsorption/Desorption-Equilibrium

$$\frac{\mathrm{d}\mathbf{n}_1}{\mathrm{d}\mathbf{t}} = \mathbf{R} - \mathbf{v}_0 \cdot \mathbf{n}_1 \cdot \mathbf{e}^{-\frac{\mathbf{E}_{\mathrm{Des}}}{\mathbf{k}_{\mathrm{B}} \mathbf{T}_{\mathrm{S}}}} = \mathbf{0}$$



- $n_1 = Monomer number [m^{-2}]$
- $R = Deposition rate [m^{-2}s^{-1}]$
- v_0 = Phonon frequency [s⁻¹]

Isolated Nucleus: Droplet-Model

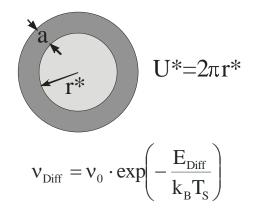
Model assumptions:

Adsorption/desorption-eq.:

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} = 0 = \mathrm{R} - \mathrm{n}_1 \mathrm{v}_0 \exp\left(-\frac{\mathrm{E}_{\mathrm{Des}}}{\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{S}}}\right)$$
$$n_1 = \mathrm{R} \mathrm{v}_0^{-1} \exp\left(\frac{\mathrm{E}_{\mathrm{Des}}}{\mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{S}}}\right)$$

Supply of monomers to the critical nucleus:

Surface diffusion from capture zone, with area $2\pi r^*a$



Number of droplets with radius r:

$$\mathbf{n}(\mathbf{r}) = \mathbf{n}_1 \exp\left(-\frac{\Delta \mathbf{G}(\mathbf{r})}{\mathbf{k}_{\rm B} \mathbf{T}_{\rm S}}\right)$$

Nucleation rate of critical nuclei (radius r*):

$$I[m^{-2}s^{-1}] = U * a \cdot n_1 \cdot v_0 \cdot exp\left(-\frac{E_{\text{Diff}}}{k_B T_S}\right) \cdot n_1 exp\left(-\frac{\Delta G *}{k_B T_S}\right)$$

Taking into account the adsorption/desorption equilibrium:

$$I[m^{-2}s^{-1}] = U * a \cdot n_1 \cdot R \cdot \exp\left(\frac{E_{Des} - E_{Diff} - \Delta G *}{k_B T_S}\right)$$
$$= U * a \cdot v_0^{-1} \cdot R^2 \cdot \exp\left(\frac{2 \cdot E_{Des} - E_{Diff} - \Delta G *}{k_B T_S}\right)$$

Particle-Model: Mass Action Law (MWG) Stochiometric reaction: $aA + bB \stackrel{v_1}{\leftrightarrow} cC + dD$ $v_1 = k_1 \stackrel{a}{c_A} \cdot \dots \cdot \stackrel{b}{c_A} \stackrel{c}{c_B} \cdot \dots \cdot \stackrel{c}{c_B}$ $k_1 = K_c = \frac{c_C^c c_D^d}{c_A^a c_B^b}$ $v_2 = k_2 \stackrel{c}{c_C} \cdot \dots \cdot \stackrel{c}{c_C} \stackrel{d}{c_D} \cdot \dots \cdot \stackrel{c}{c_D}$

- **k**_{1,2} = **Proportionality constants**
 - c_i = Concentrations

$$K_{c}$$
 = Reaction constant

 K_C is connected to the energy ΔE which is set free or consumed by the reaction:

$$\Delta E = -k_{\rm B}T\ln K_{\rm c}$$

Mass Action Law and Particle-Model

i single particles form i-particle aggregate:

$$c_1 \equiv n_1 / N_0 = i \cdot 1$$

$$c_i \equiv n_i / N_0 = 1$$

$$\frac{n_{i}}{N_{0}} / \left(\frac{n_{1}}{N_{0}}\right)^{i} = K_{c} = \exp\left[-\frac{\Delta E}{k_{B}T_{S}}\right] = \exp\left[\frac{E_{i}}{k_{B}T_{S}}\right]$$

- N_0 = Number of available adsorption sites
- $E_i = -\Delta E = Energy gain in the case of formation of a i-particle Aggregate$

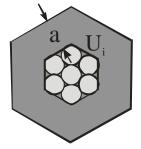
Isolated Nucleus: Particle Model

Model assumptions:

Adsorption/desorption-eq.:

Supply of monomers to the critical nucleus:

Surface diffusion from capture zone, with area U_i a



Mass action law valid for the formation of a i-aggregate:

i monomers 1 i-aggregate

$$\left(\frac{\mathbf{n}_1}{\mathbf{N}_0}\right)^{-i} \left(\frac{\mathbf{n}_i}{\mathbf{N}_0}\right) = \exp\left(\frac{\mathbf{E}_i}{\mathbf{k}_B \mathbf{T}_S}\right)$$

Number of i-particle aggregates:

$$\mathbf{n}_{i} = \mathbf{N}_{0} \left(\frac{\mathbf{n}_{1}}{\mathbf{N}_{0}}\right)^{i} \exp\left(\frac{\mathbf{E}_{i}}{\mathbf{k}_{B} \mathbf{T}_{S}}\right)$$

Nucleation rate of i+1-aggregates:

$$\mathbf{I}_{i+1}[\mathbf{m}^{-2}\mathbf{s}^{-1}] = \mathbf{n}_i \cdot \mathbf{U}_i \cdot \mathbf{a} \cdot \mathbf{n}_1 \cdot \mathbf{v}_0 \cdot \exp\left(-\frac{\mathbf{E}_{\text{Diff}}}{\mathbf{k}_{\text{B}}\mathbf{T}_{\text{S}}}\right)$$

Taking into account the adsorption/desorption equilibrium:

$$I_{i+1}[m^{-2}s^{-1}] = U_i \cdot a \cdot R \cdot N_0 \left(\frac{R}{\nu_0 N_0}\right)^i exp\left(\frac{(i+1)E_{Des} + E_i - E_{Diff}}{k_B T_S}\right)$$

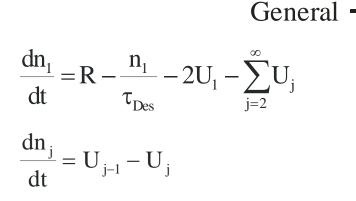
Nucleation Rates: Interpretation

Simple nucleation theory yields nucleation rates I of the form:

$$\mathbf{I}[\mathbf{m}^{-2}\mathbf{s}^{-1}] \cong \mathbf{A} \cdot \mathbf{R}^{p} \mathbf{e}^{\frac{\mathbf{E}}{\mathbf{k}_{B} \mathbf{T}_{S}}}$$

Droplet-model: Particle-model: $E=E(\Delta G^*) =>$ unambigous $E=E(i, E_i) =>$ ambigous

Rate Equations



- R = Deposition Rate
- \dagger_{Des} = Monomer Re-evaporation time
- $n_1 =$ Monomer density
- n_i = Density of i-particle-aggregates
- U_i = Monomer capture rates of i-particle aggregates

Simplified

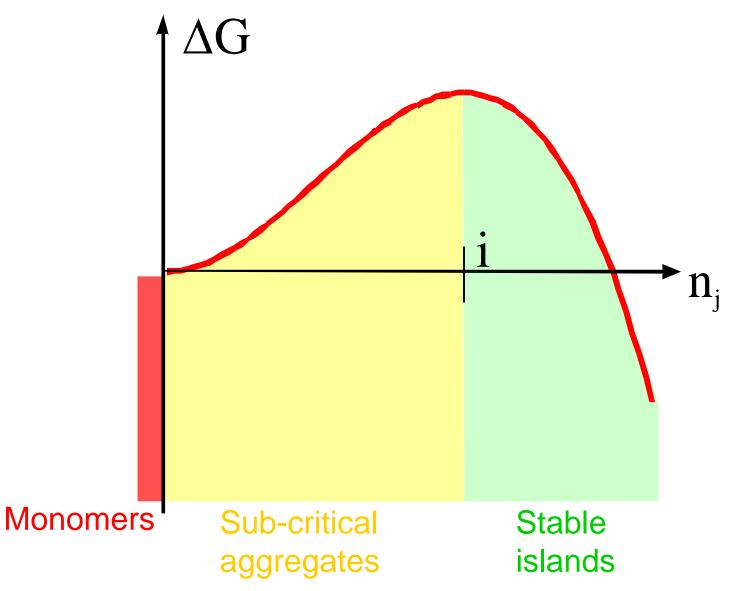
$$\frac{dn_{1}}{dt} = R - \frac{n_{1}}{\tau_{Des}} - \frac{d(n_{x}w_{x})}{dt}$$

$$\frac{dn_{j}}{dt} = 0 \quad (2 \le j \le i)$$

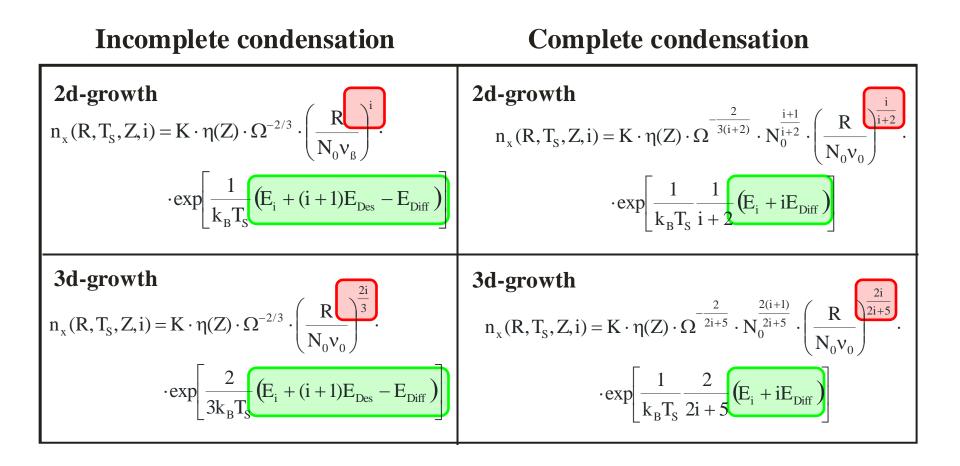
$$\frac{dn_{x}}{dt} = U_{i} - U_{c} - U_{m}$$

$$n_{x} = \sum_{j=i+1}^{\infty} n_{j} = \text{Number of stable islands}$$

- $w_x =$ Mean number of atoms in stable island
- $U_i = Island$ generation, monomer capture
- U_c = Island annihilation, growthcoalescence
- U_m = Island annihilation, mobilitycoalescence



Rate Equations: Solutions



 $K = K(\alpha, s_i, C_i)$ $K \cdot \eta(z) \cong 1$ for Z<10%

Island Densities: Interpretation

Rate equations yield island densities n_x of the form:

$$n_x[m^{-2}] \cong A \cdot \left(\frac{R}{\nu_0}\right)^p e^{\frac{E}{k_B T_S}}$$

The exponent p is not necessarily an integer and is a function of the size of the critical nucleus, i. Observable: Island Density n_x

The solution of the rate equations allow the prediction or the determination of the

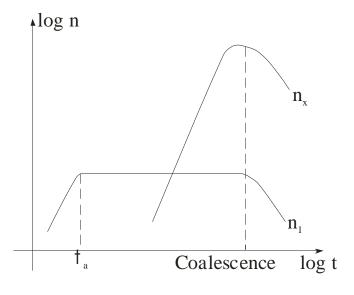
- Size of the critical nucleus
- Condensation regime
- Growth mode (2d/3d)
- Dependence of n_x on T_S
- Dependence of n_x on R

by the observation of n_x for selectes T_s and R.

Rate Equations: General Solution

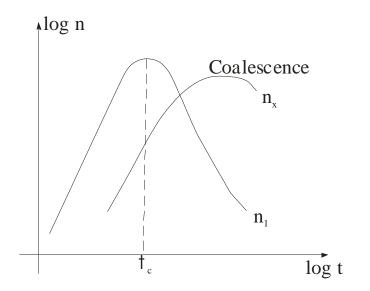
Incomplete condensation

$$\frac{dn_1}{dt} = 0 = R - \frac{n_1}{\tau_a}$$
$$\frac{d(n_x w_x)}{dt} \cong 0$$



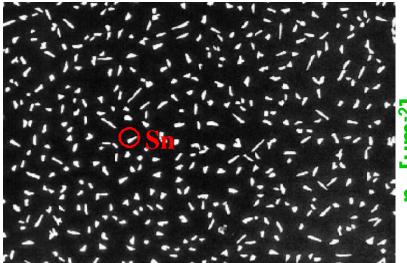
Complete condensation

$$\frac{\mathrm{d}n_1}{\mathrm{d}t} = \mathrm{R} - \frac{\mathrm{d}(\mathrm{n_x}\mathrm{w_x})}{\mathrm{d}t}$$

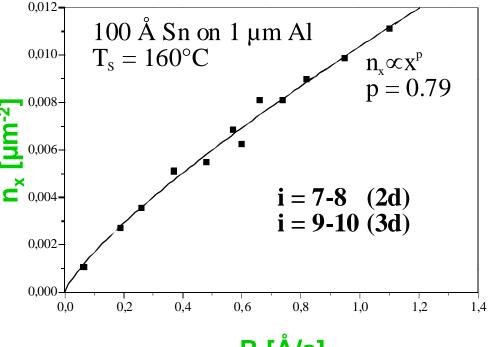


Example: Determination of Critical Nucleus Size

Sn on polycrystalline Al:



The variation of the deposition rate R at constant substrate temperature T_s allows the determination of the critical particle number in the critical nucleus, i

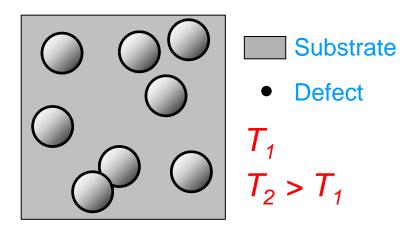


R [Å/s]

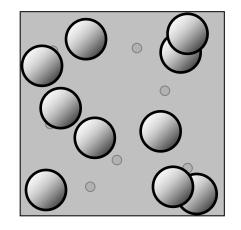
The condensation regime can be noted due to the "fractional power law", i. e. p<1.

Nucleation Scenarios

Heterogenous nucleation



Homogenous nucleation



Substrate • Defect T_1 $T_2 > T_1$

Limits of Rate Equations

Rate equations allow no statement about

- the shape of stable islands
- the size distribution of stable islands
- the influence of defects on nucleation

because they represent a "mean field theory", i. e. they neglect the influence of correlations within the island distribution or of special island shapes on the local monomer density. Kinetic Monte Carlo Simulaion I

Kinetic Monte Carlo (KMC) simulations allow the determination of

- the shape of the stable islands
- the size distribution of stable islands
- the influence of defects on nucleation

they only use the elemetary processes of film growth (deposition, surface diffusion, desorption, particle bonding) as input for the simulation of film growth.

Kinetic Monte Carlo Simulaion II

- Definition of event types
- Definition of relative event probabilities ("conditional probabilities")
- Choice of a particle for the execution of the event
- Determination of the time interval between specific events

Advantage: each chosen event changes the system Disadvantage: not all event types are known a

priori; algorithm is memory consuming

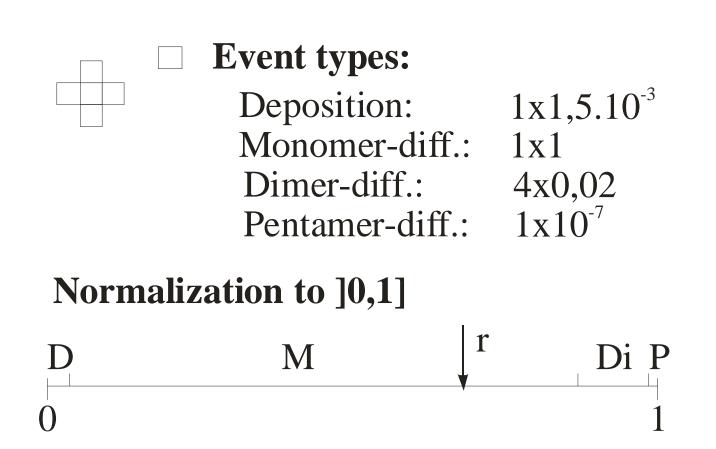
KMC: Principle I

Particle configurations and event types:

$$\begin{split} E_{\text{Diff}} &= 0.4 \text{ eV} \\ E_{\text{b}} &= 0.2 \text{ eV} \\ &\boxtimes \quad v_{1} = v_{0} \exp[-(E_{\text{Diff}} / k_{\text{B}} T_{\text{S}})] \quad \equiv 1 \\ &\boxtimes \quad v_{2} = v_{0} \exp[-(E_{\text{Diff}} + E_{\text{b}}) / k_{\text{B}} T_{\text{S}}] \quad \equiv 0,02v_{1} \\ &\boxtimes \quad v_{3} = v_{0} \exp[-(E_{\text{Diff}} + 2E_{\text{b}}) / k_{\text{B}} T_{\text{S}}] \equiv 4.10^{-4} v_{1} \\ &\boxtimes \quad v_{5} = v_{0} \exp[-(E_{\text{Diff}} + 3E_{\text{b}}) / k_{\text{B}} T_{\text{S}}] \equiv 9.10^{-6} v_{1} \\ &\boxtimes \quad v_{5} = v_{0} \exp[-(E_{\text{Diff}} + 4E_{\text{b}}) / k_{\text{B}} T_{\text{S}}] \equiv 2.10^{-7} v_{1} \end{split}$$

KMC: Principle II

Conditional probabilities



KMC: Principle III

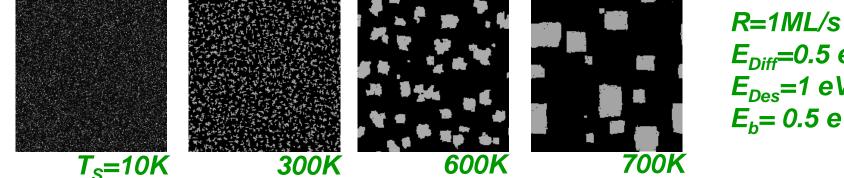
Time step:

$$\Delta t_{\text{event}} = -\left\{ R + v_0 \left(\sum_n n_n \exp\left[-\left(E_{\text{Diff}} + nE_b\right) / \left(k_B T_S\right)\right] \right) \right\}^{-1} \ln r$$

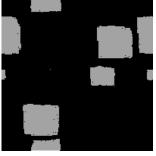
r ... Random number [0,1[n_n...Number of monomers with n nearest neighbors

KMC – Results and Trends I

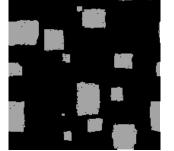
Variation of substrate temperature T_s



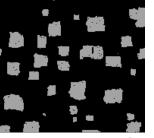
Variation of deposition rate R



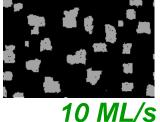
R=0.5 ML/s



1ML/s



5 MI/s

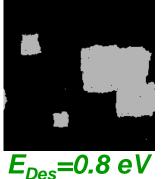


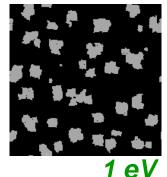
E_{Diff}=0.5 eV $E_{Des}=1 \text{ eV}$ $E_{b} = 0.5 \text{ eV}$

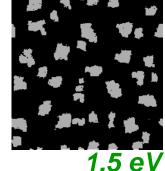
T_s=700 K *E*_{*Diff}=0.5* eV</sub> $E_{\text{Des}} = 1 \text{ eV}$ $E_{b} = 0.5 \text{ eV}$

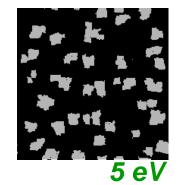
KMC – Results and Trends II

Variation of desorption energy E_{Des}



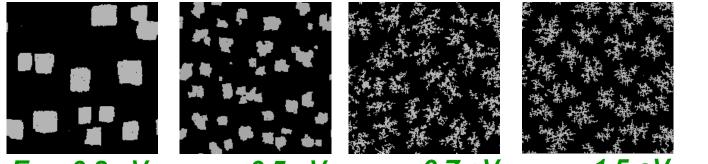






 $T_{s} = 600 K$ R=1ML/s *E_{Diff}=0.5 eV* $E_{b} = 0.5 \text{ eV}$

Variation lateral bond energy E_b

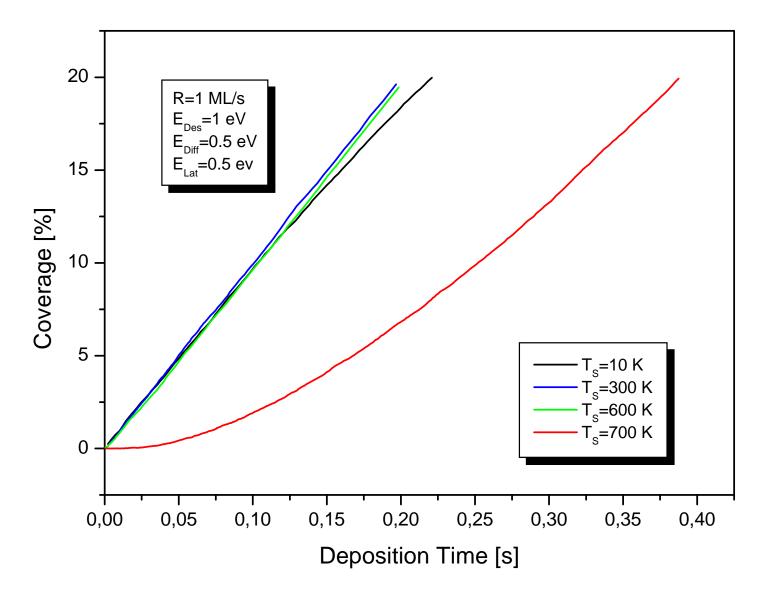


E_{Lat}=0.3 eV

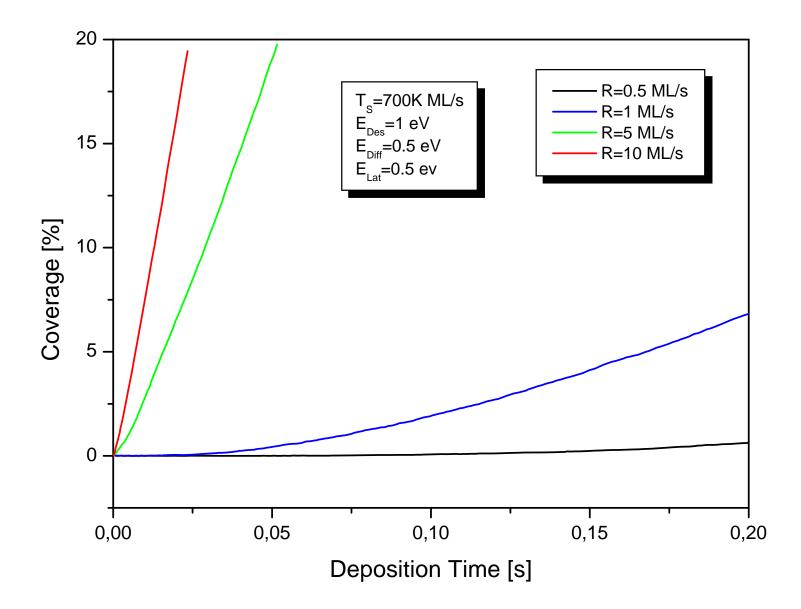
- 0.5 eV
- 0.7 eV

 $T_{s} = 600 K$ R=1 ML/s *E_{Diff}=0.5 eV* E_{Des}=1 eV

KMC – Temperature Variation



KMC – Rate Variation



KMC – Island Size Distributions

