# **Repetition: Sputter Yield**



<n> = mean number of particles emitted per impingement n<sup>+</sup> = number of impinging ions

Y is dependent on several parameters of the ions and of the target material.



# **Repetition: Energy of Ejected Particles**



The energy distribution of sputtered particles is significantly different from that of thermally evaporated ones.

## Repetition: Angular Distribution at Emission



$$n(\alpha) \propto \cos^{n} \alpha$$
  
 $n \leq 1 \quad \text{E} < 1 \text{ keV}$   
 $n > 1 \quad \text{E} > 1 \text{ keV}$ 

# **Repetition: Sputtering of Alloys**



# In the case of the homogenous distribution of the constituents the vapor composition is (after a transient regime) identical to the target composition.

## Repetition: Reaktive Processes (TiN)

Pressure in the chamber in dependence on the N<sub>2</sub>- flow:



point A would be the optimum working condition

## **Gas Phase Transport**



Modification of energy- and angular distribution of the coating material during the transport from source to substrate.

- Deposition material
- Working gas, neutral or reactive

## Film Particle Trespasses Gas Phase



Per collision the particle suffers a mean energy loss  $\Delta E$ and a mean change of the angle  $\Delta \phi$ .

## Mean Energy Loss I

**Initial condition:** particle 1 at rest, particle 2 moves. Wanted: energy loss of particle 2.

$$\left\langle \frac{E'}{E} \right\rangle = 1 - \frac{1}{2} \cdot \frac{4 \cdot \mu}{\left(1 + \mu\right)^2}, \quad \mu = \frac{m_1}{m_2}, \quad \left\langle \Delta E \right\rangle \approx E \cdot \left( 1 - \left\langle \frac{E'}{E} \right\rangle \right)$$

E ... Energy particle 2 before collision E' ... Energy particle 2 after collision

Light working gas: $\mu = 0.1 \Rightarrow \langle E'/E \rangle = 0.83$ Equal masses: $\mu = 1 \Rightarrow \langle E'/E \rangle = 0.5$ 

**Heavy working gas:**  $\mu = 10 \Longrightarrow \langle E'/E \rangle = 0.83$ 

# Mean Energy Loss II

Situation after 5 Collisions:

Light working gas: $\mu = 0.1 \Rightarrow (\langle E'/E \rangle)^5 = 0.4$ Equal masses: $\mu = 1 \Rightarrow (\langle E'/E \rangle)^5 = 0.03$ Heavy working gas: $\mu = 0.1 \Rightarrow (\langle E'/E \rangle)^5 = 0.4$ 

For more realistic collision processes there are energy dependent collisional cross sections. The slower a particle is, the larger is it's cross section. Furthermore at a certain point the velocity distribution if the gas atoms has to be taken into account.

## Mean Scattering Angle I

#### Mean scattering angle $\theta$ of particle 2:

$$\left\langle \cos \varphi \right\rangle = 1 - \frac{\mu^2}{3}, \quad \mu = \frac{m_1}{m_2} < 1$$
$$\left\langle \cos \varphi \right\rangle = \frac{2}{3 \cdot \mu}, \quad \mu = \frac{m_1}{m_2} > 1$$

Light working gas: $\mu = 0.1 \Rightarrow \langle \phi \rangle = 4.6^{\circ}$ Equal masses: $\mu = 1 \Rightarrow \langle \phi \rangle = 48.2^{\circ}$ Heavy working gas: $\mu = 10 \Rightarrow \langle \phi \rangle = 86.2^{\circ}$ 

## Mean Scattering Angle II

Number f collisions n, to cover 360° (complete loss of directional information):

Light working gas: $\mu = 0.1 \Rightarrow \langle \phi \rangle = 4.6^{\circ}$ n = 79Equal masses: $\mu = 1 \Rightarrow \langle \phi \rangle = 48.2^{\circ}$ 

Heavy working gas:

$$n = 8$$
  

$$\mu = 10 \Longrightarrow \langle \phi \rangle = 86.2^{\circ}$$
  

$$n = 5$$

# **Summary Gas Phase Scattering**

As a result of collisions in the gas phase two limiting cases can be distinguished:



# **Elementary Steps of Film Deposition**



# Surface Types I

#### **Face centered cubic**







(100)

(110)

000000  $\circ \circ \circ \circ \circ \circ \circ \circ ^{a}$ 0000000 0000000  $a\sqrt{2}$ 

(111)

# Surface Types II

#### **Body centered cubic**







(100)

(110)

(111)







# **Determination of Potential Energy Surfaces**



Topmost Atomic Layers (Side View)

#### **Elementary Potential Energy Surfaces**





(110)



(111)

## **More Complex Surface Geometries**

#### Stepped surface – Ehrlich Schwöbel barrier



# **Binding Energies**

#### Important binding energies



## **Elementary Processes: Phonon Oscillations**





#### **Desoprtion frequency:**



$$E_{Des} \cong 1 - 3eV$$

## **Elementary Processes: Surface Diffusion**



#### **Diffusion frequency:**



 $E_{\text{Diff}} \cong 0.1 - 0.8 \text{eV}$ 

## Surface Diffusion: Random Walk

**Pvthagoras:** 



$$l^{2} = \left(\sum_{i=1}^{n_{x}} x_{i}\right)^{2} + \left(\sum_{i=1}^{n_{y}} y_{i}\right)^{2} \qquad x_{i}, y_{i} = \pm a$$

$$l^{2} = \left(\sum_{i=1}^{n_{x}} x_{i} \sum_{j=1}^{n_{x}} x_{j}\right) + \left(\sum_{i=1}^{n_{x}} y_{i} \sum_{j=1}^{n_{x}} y_{j}\right)$$

$$\left\langle l^{2} \right\rangle = \left\langle \left(\sum x_{i} \sum x_{j}\right) \right\rangle + \left\langle \left(\sum y_{i} \sum y_{j}\right) \right\rangle =$$

$$= \left\langle \sum_{i=1}^{n_{x}} x_{i}^{2} \right\rangle + \left\langle \sum_{i=1}^{n_{y}} y_{i}^{2} \right\rangle = (n_{x} + n_{y}) \cdot a^{2} = N \cdot a^{2}$$

1...effective distance travelled by particle

$$\langle l^2 \rangle = \mathbf{N} \cdot \mathbf{a}^2$$

## Surface Diffusion: Diffusion Coefficient

$$\begin{pmatrix} 1^{2} \\ \end{pmatrix} = N \cdot a^{2}$$

$$D = v_{0} \cdot a^{2} \cdot e^{-\frac{E_{\text{Diff}}}{k_{B}T_{S}}} [m^{2}s^{-1}]$$

$$V_{\text{Diff}} = v_{0} \cdot e^{-\frac{E_{\text{Diff}}}{k_{B}T_{S}}}$$

$$Einstein-relation:$$

$$\begin{pmatrix} 1 \\ \end{pmatrix} \cong \sqrt{D\tau}[m]$$

$$r = \text{Diffusion time}$$



#### Lattice vibrations:

$$v_0 \cong 5 \cdot 10^{12} \,\mathrm{Hz}$$

#### Surface diffusion:



# $T_{S} = 300 \text{ K}$ $k_{B} = 1,38.10^{-23} \text{J/K}$

$$\begin{split} & \mathsf{E}_{\mathsf{Diff}} = 0,2 \; eV{=}3,2.10^{-20} \; \mathsf{J} \\ & \nu_{\mathsf{Diff}} = 2,2.10^9 \; \mathsf{Hz} \\ & \tau_{\mathsf{Diff}} = \nu_{\mathsf{Diff}}{}^{-1}{=}\; 0.5 \; \mathsf{ns} \end{split}$$

#### **Desorption:**

$$v_{\text{Des}} = v_0 \cdot e^{-\frac{E_{\text{Des}}}{k_B T_S}}$$

 $E_{Des} = 2 \text{ eV} = 3,2.10^{-19} \text{ J}$   $v_{Des} = 1,2.10^{-21} \text{ Hz(!)}$  $\tau_{Des} = v_{Des}^{-1} = 10^{13} \text{ a}$ 

### **Time Scales II**



Important phenomena happen on extremely different time scales!

## **Condensation Regimes**

 Complete condensation:
 Each impinging particle remains on the surface because of the extremely low desorption frequency. Prerequisite: T<sub>s</sub> <</li>

 Incomplete condensation:
 Particles can desorb, an adsorption/desorption-equilibrium is created ein (see later).
 Prerequisite: T<sub>s</sub> >