Repetition: Sputter Yield
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<n> = mean number of particles emitted per impingement
n* =number of impinging ions

Y Is dependent on several parameters of
the ions and of the target material.



Repetition: Sputtering Regimes

@ Single Knock On

P

@ Linear Collision Cascade _

@ Thermal Spike
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Repetition: Energy of Ejected Particles
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The energy distribution of sputtered

particles is significantly different from that
of thermally evaporated ones.



Repetition: Angular Distribution at Emission
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Repetition: Sputtering of Alloys
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In the case of the homogenous distribution of the
constituents the vapor composition is (after a
transient regime) identical to the target composition.



Repetition: Reaktive Processes (TIN)

Pressure in the chamber in dependence on the N,- flow:

no plasma
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At first all N, is consumed; the unstable operating
point A would be the optimum working condition




Gas Phase Transport

X0 -600V

@ @ Deposition material
@ © Working gas, neutral or reactive

Modification of
energy- and angular
distribution of the
coating material
during the transport
from source to
substrate.



Film Particle Trespasses Gas Phase
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Per collision the particle suffers a mean energy loss AE
and a mean change of the angle Ag.



Mean Energy Loss |

Initial condition: particle 1 at rest, particle 2 moves.
Wanted: energy loss of particle 2.
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E ... Energy particle 2 before collision
E' ... Energy particle 2 after collision

-

Light working gas: u=01=(E'/E)=0.83
Equal masses: u=1=(E'/JE) = 0.5

Heavy workinggas: u=10= (E'/E) = 0.83



Mean Energy Loss Il
Situation after 5 Collisions:
Light working gas: u=01= (E'/JE))> =04
Equal masses: u=1= ((E'/E))> =0.03
Heavy working gas: u = 0.1 = ((E'/E))°> = 0.4
For more realistic collision processes there are energy
dependent collisional cross sections. The slower a
particle is, the larger is it's cross section. Furthermore at

a certain point the velocity distribution if the gas atoms
has to be taken into account.



Mean Scattering Angle |

Mean scattering angle 0 of particle 2:

4 2 )
<005(p>:1—“—, u:ﬂ<1
3 m,
<COS(p>=i, u=ﬂ>l
. SH M
Light working gas: H=0-1:><(P>=4-6°
Equal masses: u=1l= <(p>:48.2°

Heavy working gas: u=10= (¢p)=86.2°



Mean Scattering Angle Il

Number f collisions n, to cover 360° (complete loss of
directional information):

Light working gas: n=01=(p)=46°
n=79

Equal masses: n=1= <(p> = 48.2°
n=28

Heavy working gas: u=10:><(p>:86.2°

n=>5



Summary Gas Phase Scattering

As aresult of collisions in the gas phase two limiting
cases can be distinguished:
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Elementary Steps of Film Deposition

“ Impingment at substrate

Transport

Ejection from source




Surface Types |

Face centered cubic
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Surface Types I

Body centered cubic
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Determination of Potential Energy Surfaces

‘Vacuum

Test Atom ®
(x=y=fixed)

\ Y4

Equilibrium
Position

—Level U(z) Interaction Surface/Test Atom
| Described by Model Potentials

Pair Potentials:

Lennard Jones
Morse

Many Body Potentials:
Embedded Atom
Sutton Chen

KF\ Tight Binding




Elementary Potential Energy Surfaces
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More Complex Surface Geometries

Stepped surface — Ehrlich Schwobel barrier




Binding Energies

Important binding energies
Vacuum state ‘

Epes: Eags- MOnomer-Desorptios energy (positive)
Epit - Activation energy of surface diffusion

Epes (positive)

Eads E;: Binding energy of an i-particle island (negativ)
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Elementary Processes: Phonon Oscillations

Phonon frequency:
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Elementary Processes: Desorption
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Desoprtion frequency:
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v, =5-10%Hz




Elementary Processes: Surface Diffusion

i

v, =5-10" Hz

Diffusion frequency:
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E... =0.1-0.8eV



Surface Diffusion: Random Walk
Pythagoras:
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Surface Diffusion: Diffusion Coefficient
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Einstein-relation:
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(1) = yDr[m]

t = Diffusion time



Time Scales |

Lattice vibrations:

v, =5-10"Hz |

Surface diffusion:
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Desorption:
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T =300 K
Ky = 1,38.1023J/K

o= 0,2 eV=3,2.1020 ]
Vo = 2,2.10° Hz
Tpitt =Vpirf == 0.5 Ns

Epes = 2 €V=3,2.1019]
Vpes = 1,2.10721 Hz(!)
TDes :VDes_lz 10" a



Time Scales I

4 A )

TDiff/TPhonon =10

Tond T =1039 (1

9 Des’ YDiff ( )/
N

[

\_

Important phenomena happen on
extremely different time scales!
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Condensation Regimes

@ Complete condensation:

Each impinging particle remains

on the surface because of the
extremely low desorption frequency.
Prerequisite: Tg <

@ Incomplete condensation:

Particles can desorb, an
adsorption/desorption-equilibrium
IS created ein (see later).
Prerequisite: Tg >
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