Repetition: Evaporation of Alloys

Alloy composition: A:B=1:1

L10g(RA/Rg) Ais thoe m(z)re volatile material (p, > pg)
100 No= Nt Ny particle number fort=0

N =nt ngtotal number of evaporated particles
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Evaporation of an alloy corresponds to a fractional
destillation. The reason for this is the unhindered
material transport within the source.



Repetition: Sputtering

Elementary Processes: Characteristics:

@ Solid source, i. e. arbitrary
source geometry

@ Low deposition temperature

@ High deposition rates can be
reached

@ Wide parameter field

@ Coating composition =
source composition

) 600V @ Good coating adhesion

@ Interesting film properties

@ @ Deposition material
@ O© Working gas, neutral or reactive



Repetition: Gas Discharge

Experimental set-up:
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I/\VV characteristic:

I:  Ohmic behavior

lI: Saturation region

llI: collisional ionization/
Townsend-discharge

I\VV: normal glow

V. anormal glow

tained gas 0 O ) secondary electron

self sustained
gas discharge

non-self sus-
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Repetition: RF-Sputtering
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An excess electron current is generated by the higher
electron mobility. It leads to a negative net voltage at
the target, idependent wether the target is conductive

or not.



Repetition: Magnetron-Sputtering
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DISCHARGE VOLTAGE (Volts)

Repetition: |/V Characteristics
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Magnetron discharges work at significantly lower
gas pressures!
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R = Erosion rate
| = Discharge current
U = Discharge voltage




Sputter Yield |
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<n> = mean number of particles emitted per impingement
n* =number of impinging ions

Y Is dependent on several parameters of
the ions and of the target material.



Sputter Yield Il

Dependence on
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Sputter Yield Il

Dependence on:
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Sputtering Regimes: Single Knock On
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Sputtering Regimes: Linear Collision Cascade |

Ejection volume
approx. 1 nm’
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lon energy: 0.1 - 10 keV
Collision potentials:

E* 0.1 -1 keV: Born-Mayer
E* 1-10 keV: Thomas-Fermi
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M, = Mass of target atoms



Sputtering Regimes: Linear Collision Cascade Il
Perpendicular impingement:

COLLISION CASCADE 30KEV AR ON CU

T

o
S
s T .
-
[/

DISTANCE FROM POINT OF IMPACT (A)
o

(3o
o
—
<Py
.’s
P

40+

DEPTH (A)



Sputtering Regimes: Linear Collision Cascade ll|
Obligue impingement:
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Sputtering Regimes: Thermal Spike

lon energy > 10 keV
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Linear Collision Cascade: Global Characteristics

4.0

ARGON

Ag

Ejection volume e
approx. 1 nm’ N

—0 00 000 i
/o—o\g/ooo
000000
”OOO@O/O
ooo©©|©
ooo©o|o °

LD (Ato

3
>

SPUTTERING Y1

4
100 200 300 400 500 600 700 800
ION ENERGY (eV)

Y=05-4 |

=]




Sputtering Regimes: Simulation
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Stopping Range of lons in Matter



Energy Distribution of Ejected Particles
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The energy distribution of sputtered
particles iIs significantly different from that

of thermally evaporated ones.



Linear Collision Cascade: Energy Distribution
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Linear Collision Cascade: Angular Distribution
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Sputtering of Alloys: Different Y
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In the case of the homogenous distribution of the
constituents the vapor composition is (after a
transient regime) identical to the target composition.



Sputtering of Alloys: Cone Formation |
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If a low yield material is present in the form of
macroscopic preciptates, cones can be formed on the
target surface.



Sputtering of Alloys: Cone Formation Il
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The terminating
surfaces of the cones
are often low index
crystal planes or have
an inclination
corresponding to
surfaces with maximum
sputter yield.



Sputtering of Single Crystals: Channelling

lons may penetrate a
single crystal more or
less deep In
dependence on their
Impingement direction.




Sputtering of Single Crystals: Wehner-Spots

Focusing of the impulse along densly
packed crystallographic directions:
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Y = maximum along these directions! If a
hemispherical collector is placed above the
target, one can detect the so-called "Wehner
Spots”.



Reactive Processes |

In the case of reactive sputtering processes
compounds of the sputtered material and the reactive
gas are formed at the target and the substrate.

(RF)-voltage

[

9

1 (Ti)-target

Reaktive

gas (N,) 7Z1Yg

Recipient wall/

substrate

Pump

Berg-model

Gas flows of the
reactive gas,

d;-

[qo —q, +0, +qu

Jo --- Total flow

g, ... Flow to target
d. --- Flow to wall
dp, --- Flow to pump



Reactive Processes ||

Balance of areal coverages and particle flows:

Q, 1-Q,

Fl
Wall c
Q, 1-Q,
®, ... Reacted surface target J ... Flow of workong gas
®, ... Reacted surface Wall F ... Flow of reactive gas

F, ;... Flows of reaction product
F,, ... Flows of metal particles

Result: system of numerically solvable balance equations



Reactive Processes: Example TIN |

Erosion rate at the target in dependence on the N,-flow:
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Hysteresis at the transition from the metallic to the
nitridic mode.



Reactive Processes: Example TIN I

Pressure in the chamber in dependence on the N,- flow:

no plasma
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At first all N, Is consumed; the unstable operating

point A would be the optimum working condition




TIN: Experimental Data

The hysteresis in the relation betweem N,-flow and
total pressure is well visible.
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Reactive Processes: Large Plants

Sputtering plant for the reactive deposition of solar
cell materials.

Reactive sputtering processes have recently been
accepted as suitable methods for the deposition of
oxidic, nitridic and carbidic materials.
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