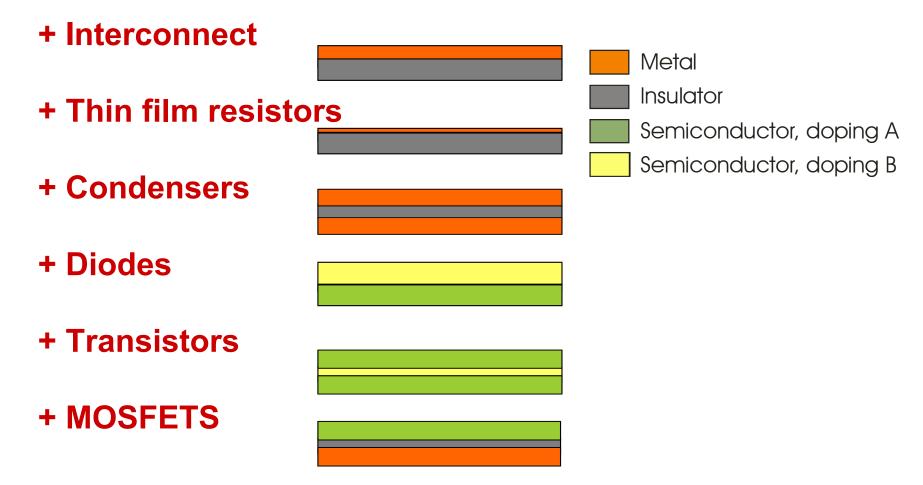
Repetition: Electronic Components

By thin film technology the following electronic components can be realized:



Repetition: Theory of Conductivity

Drude theory:

$$\vec{j} = \frac{ne^2\tau}{2m_e}\vec{E} = \boldsymbol{\sigma}\cdot\vec{E}$$

j = Current density *E* = E-field σ = Conductivity n = Number of charges e = Elementary charge m_e = Electron mass τ = Mean collision time

The central point of the Drude theory is the

Mean collision time $\boldsymbol{\tau}$

Repetition: Conductivity and Transport Theory

For a mathematically correct and also for a quantum mechanically sound calculation of the conductivity of solid bodiesor thin films **Boltzmann's transport theory has to be** applied.

Repetition: Conductivity and Current Density

General approach for the calculation of the conductivity in metals:

Starting point: current density

$$\vec{j}_e = -ne\vec{v} = -e\vec{v}\int_N \frac{dn}{V} = -e\vec{v}\frac{N}{v} = -ne\vec{v}$$

$$dn = 2 f_0(E) \cdot d\Phi$$

$$f_0(E) = \frac{1}{1 + e^{(E - E_f/k_B T)}}$$

Fermi-distribution

$$d\Phi = \frac{d^3xd^3p}{h^3}$$

Phase space volume, number of states in the phase space volume element d³xd³p Spin-number **Repetition: the Boltzmann Equation**

Descriptions of changes in f by collisions

$$\frac{\mathrm{d}\mathbf{f}(\vec{\mathbf{r}},\vec{\mathbf{v}},\mathbf{t})}{\mathrm{d}\mathbf{t}} = \left(\frac{\partial\mathbf{f}}{\partial\mathbf{t}}\right)_{\mathrm{coll}}$$

Formulation for charged particles

$$\frac{\partial f}{\partial t} + \vec{\nabla}_{r} f \frac{d\vec{r}}{dt} + \vec{\nabla}_{v} f \frac{d\vec{v}}{dt} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$
$$\frac{\partial f}{\partial t} + \vec{v} \vec{\nabla}_{r} f - \frac{e\vec{E}}{m} \vec{\nabla}_{v} f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

Repetition: Drude Model/Transport Theory

Drude:

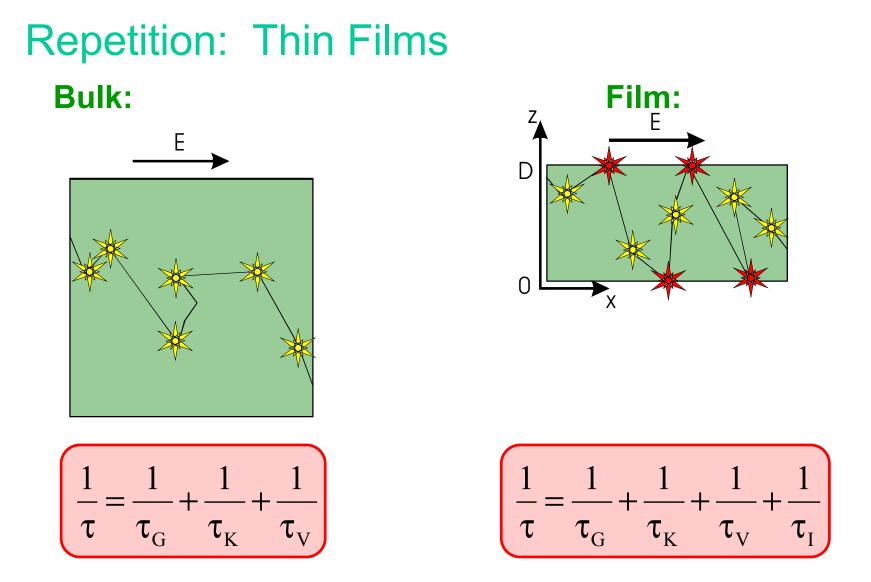
Boltzmann:

$$\vec{j} = \frac{ne^2\tau}{2m_e}\vec{E} = \boldsymbol{\sigma}\cdot\vec{E}$$

$$\vec{j} = \frac{8\pi e^2 \tau m_e^2 v_f^3}{3h^3} \vec{E} = \sigma \vec{E}$$

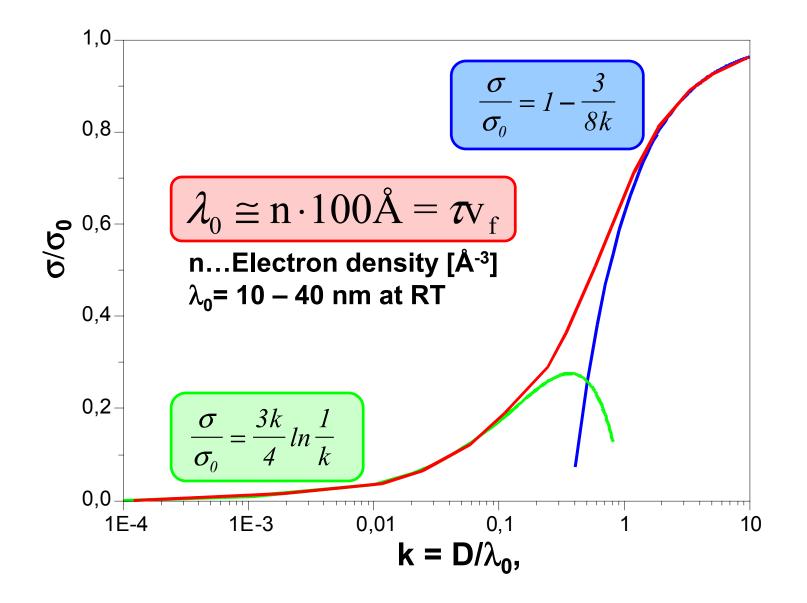
$$n = \frac{1}{V} \int dn =$$
$$= \frac{1}{V} \int_{\vec{R}, \vec{v}} 2f_0 \left(\frac{m}{h}\right)^3 d^3 x d^3 v = \frac{8\pi}{3} \left(\frac{v_f m}{h}\right)^3$$

$$\vec{j} = \frac{ne^2\tau}{m_e}\vec{E} = \boldsymbol{\sigma}\cdot\vec{E}$$



The Interfaces at z=0 and z=D are additional scattering centers for electrons!

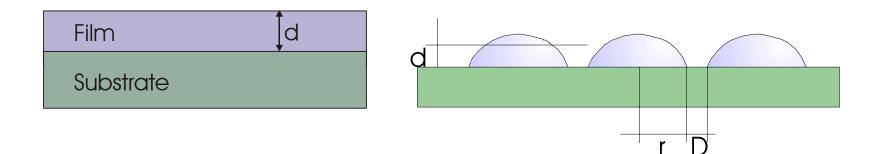
Repetition: Conductivity Approximations



Repetition: Real Thin Film Systems

Ideal:

Real:



Experiment:

$$\sigma_{dis} \ll \sigma_{kont}$$

 $\sigma \propto e^{-A/k_BT}$
 $\sigma = \sigma(E)$
 $\sigma = \sigma(r, D)$

Justification:

Diskontinuity Thermionic emission Field emission Tunnel effect

Optical Properties

Fundamentals:

The optical properties of materials result from the reaction of the electronic system to electromagnetic fields.

Static:

Dynamic:

$$\vec{j} = \boldsymbol{\sigma} \cdot \vec{E}$$

General:

$$\ddot{\vec{u}} + \Gamma \dot{\vec{u}} + \omega_0^2 \vec{u} = \frac{Q}{m} \vec{E}(\vec{u}, t)$$

Perpendicular, plane wave, z=0:

$$\ddot{\mathbf{x}} + \Gamma \dot{\mathbf{x}} + \omega_0^2 \mathbf{x} = -\frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}_0 \exp(i\omega t)$$

Dielectric Function

The dielectric function ϵ describes the "response" of a system of electrons with densities n_n , chatacteristic frequencues ω_{0n} and damping constants Γ_n to a incoming signal:

Perpendicularily impinging, plane wave:

$$\varepsilon(\omega) = \varepsilon_0 \left[1 + \chi(\omega) \right] = 1 + \frac{e^2}{m} \cdot \sum_n \frac{n_n}{\omega_{0n}^2 - \omega^2 - i\omega\Gamma_n}$$

 $\chi(\omega)$...electrical susceptibility

Dielectric Function and Conductivity

There is a connection between dielectric function and conductivity which allows a discrimination between metals and insulators at vanishing frequencies ω:

$$\varepsilon(\omega) = \varepsilon_0 + \frac{i\sigma(\omega)}{\omega}$$

 $\omega \rightarrow 0$: Metals: $\sigma(\omega)$ is finite $\rightarrow \varepsilon(\omega)$ diverges Insulators: $\sigma(\omega)$ vanishes $\rightarrow \varepsilon(\omega)$ remains finite

In the case of high frequencies ω metals and insulators behave the same!

Dielectric Function and Refractive Index

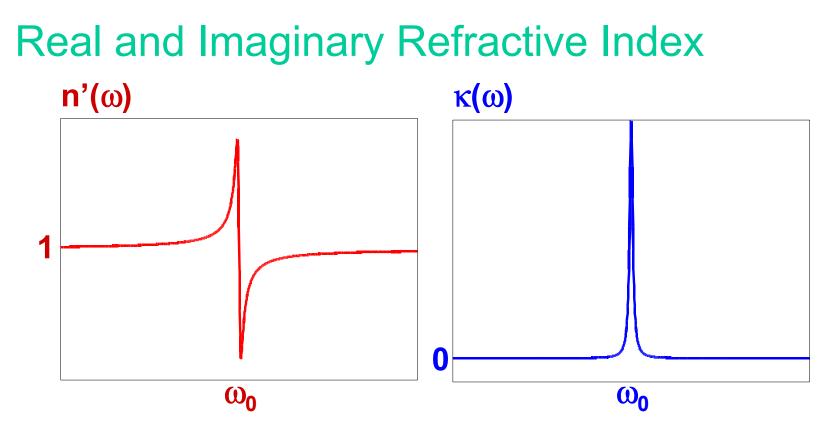
With the help of the dielectric function it is possible to define the refractive index of a material as tzhe sum of a real and an imaginary part.

One atom species:

$$n(\omega) = n'(\omega) + i\kappa(\omega)$$

$$n'(\omega) = 1 + \frac{ne^2}{\varepsilon_0 m} \cdot \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma^2}$$

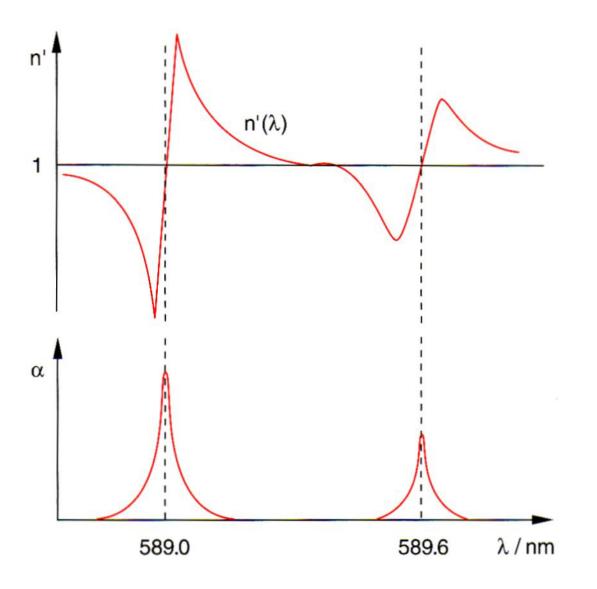
$$\kappa(\omega) = \frac{ne^2}{\varepsilon_0 m} \cdot \frac{\omega\Gamma}{(\omega_0^2 - \omega^2)^2 + \omega^2 \Gamma^2}$$



The real part of the refractive index corresponds to refractive index n, as it appears in Snellius law of refraction.

The imaginary part corresponds to the absorption of energy in the medium.

Example: Na Double Line



Optics – Frequency Independent Refraction

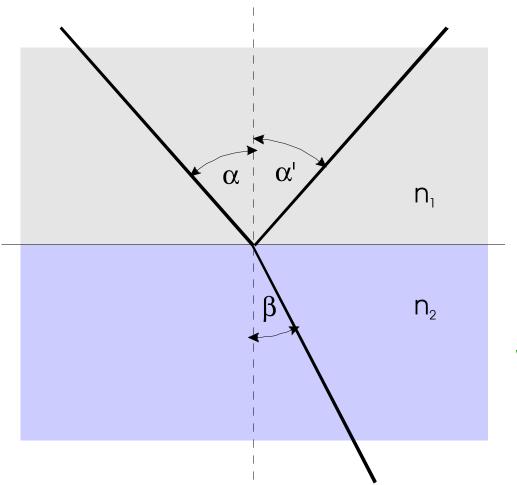
For optics the following conservation law is valid:

$$T + R + A + S = 1$$

- T ... Transmission
- R ... Reflection
- A ... Absorption
- S ... Scattering

For geometric optics the refraction index n can be considered as frequency independent.

Optics – Interfaces

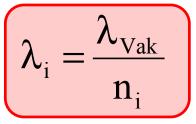


Reflection: $\alpha = \alpha'$

Refraction:

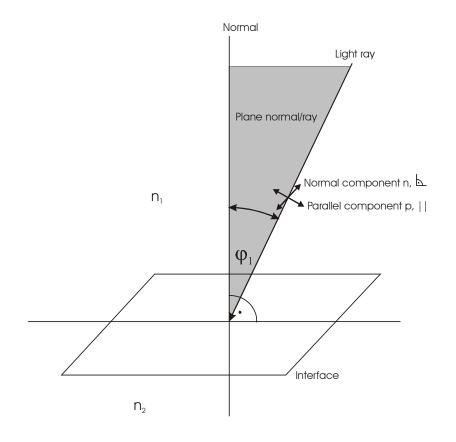
$\sin \alpha$	_ n ₂
$\overline{\sin\beta}$	n_1

Wavelength:



Fresnel's Equations

Most general description of the passage of a light ray (plane electromagnetic wave) through an interface



Reflection:

$$r_{k}^{p} = \frac{n_{k-1} \cos \varphi_{k} - n_{k} \cos \varphi_{k-1}}{n_{k-1} \cos \varphi_{k} + n_{k} \cos \varphi_{k-1}}$$

$$r_{k}^{n} = \frac{n_{k-1} \cos \varphi_{k-1} - n_{k} \cos \varphi_{k}}{n_{k-1} \cos \varphi_{k-1} + n_{k} \cos \varphi_{k}}$$

Transmission:

$$t_{k}^{p} = \frac{2n_{k}\cos\varphi_{k}}{n_{k-1}\cos\varphi_{k} + n_{k}\cos\varphi_{k-1}}$$

$$t_k^n = \frac{2n_k \cos \varphi_k}{n_k \cos \varphi_k + n_{k-1} \cos \varphi_{k-1}}$$

Fresnel's Equations: Simplification 2 Media, indices of refraction n_1 , n_2 , perpendicular impingement, i. e.: $\varphi_1 = \varphi_2 = 0^\circ$

Reflection:

$$r_k^p = r_k^n = \frac{n_1 - n_2}{n_1 + n_2}$$

Transmission:

$$t_k^p = t_k^n = \frac{2n_1}{n_1 + n_2}$$

Optical Film Thickness

Electromagnetic radiation passes from Vacuum into a Medium with refractive index n:

Frequency ω:

$$\omega_{n} = \omega_{Vak}$$
$$\lambda_{n} = \frac{\lambda_{Vak}}{n}$$

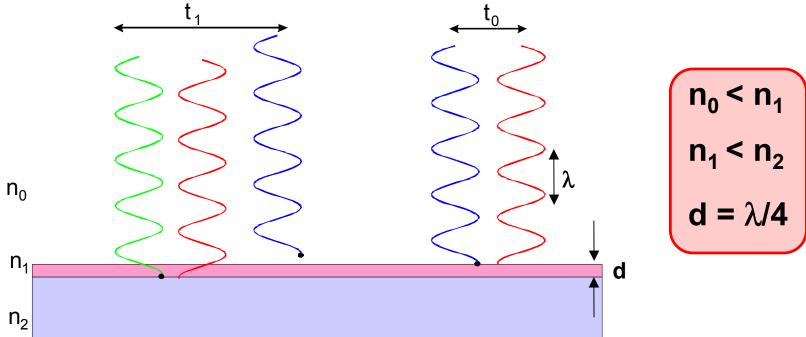
Wavelength λ :

It is:

If a film thickness is given as the moltiple of a wavelength, λ_n is meant. This film thickness is called "optical film thickness", d_{opt} .

$$d_{Opt} = n \cdot d$$

Reflection Suppression: Single Reflection I



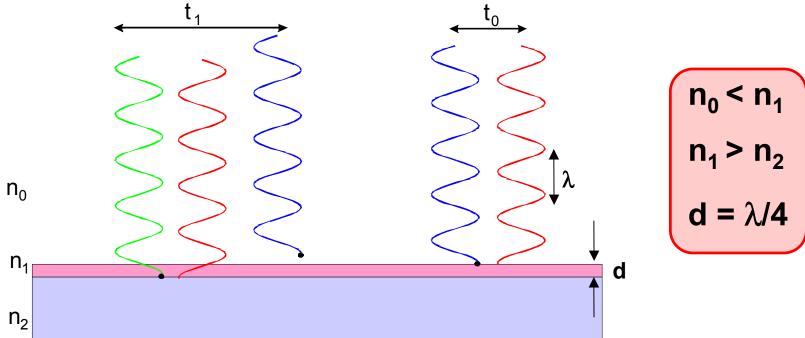
Amplitudes of reflected radiation:

$$n_{1} < n_{2}: \quad r = \frac{n_{1} - n_{2}}{n_{1} + n_{2}} < 0$$
$$n_{1} > n_{2}: \quad r = \frac{n_{1} - n_{2}}{n_{1} + n_{2}} > 0$$

Phase jump: π

Phase jump: 0

Reflection Suppression: Single Reflection II

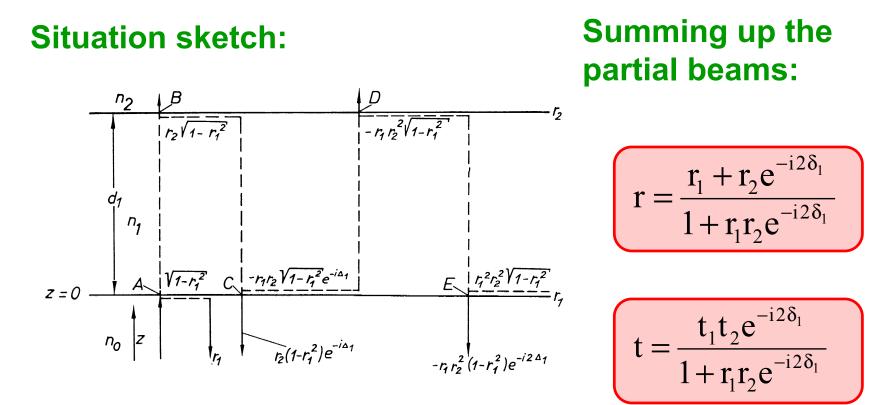


Intensities of reflected radiation:

$$I_{r}^{0} = \frac{(n_{0} - n_{1})^{2}}{(n_{0} + n_{1})^{2}} \quad I_{r}^{2} = \frac{(n_{1} - n_{2})^{2}}{(n_{1} + n_{2})^{2}}$$
$$I_{r}^{0} = I_{r}^{2} \Longrightarrow n_{1} = \sqrt{n_{0} \cdot n_{2}}$$

Amplitude requirement

Single Layer: Multiple Reflections



$$\delta_1 = \frac{2\pi}{\lambda} \cdot n_1 \cdot d_1 \cdot \cos \varphi_1$$

Thickness dependent phase-shift of the electromagnetic wave after the wave enters the coating.

Real Transmission and Reflection

$$R = \frac{r_{1}^{2} + 2r_{1}r_{2}\cos 2\delta_{1} + r_{2}^{2}}{1 + 2r_{1}r_{2}\cos 2\delta_{1} + r_{1}^{2}r_{2}^{2}}$$

$$r_{1,2} = \frac{r_{1,2}^{p} + r_{1,2}^{t}}{2}$$

$$t_{1,2} = \frac{t_{1,2}^{p} + t_{1,2}^{t}}{2}$$

$$t_{1,2} = \frac{t_{1,2}^{p} + t_{1,2}^{t}}{2}$$

$$\delta_{1} = \frac{2\pi}{\lambda} \cdot n_{1} \cdot n_{1}$$

$$r_{1,2} = \frac{r_{1,2}^{r} + r_{1,2}}{2}$$

$$t_{1,2} = \frac{t_{1,2}^{p} + t_{1,2}^{t}}{2}$$

$$\delta_{1} = \frac{2\pi}{\lambda} \cdot n_{1} \cdot d_{1} \cdot \cos \phi_{1}$$

Amplitude and Phase Requirement

There is a null in the reflected intensity, if the following requirements are fulfilled:

$$n_{1} = \sqrt{n_{0}n_{2}}$$
Amplitude
$$\delta_{1} = (2m-1)\frac{\pi}{2}$$

$$m = 1, 2, 3, ...$$
Amplitude
Phase rec

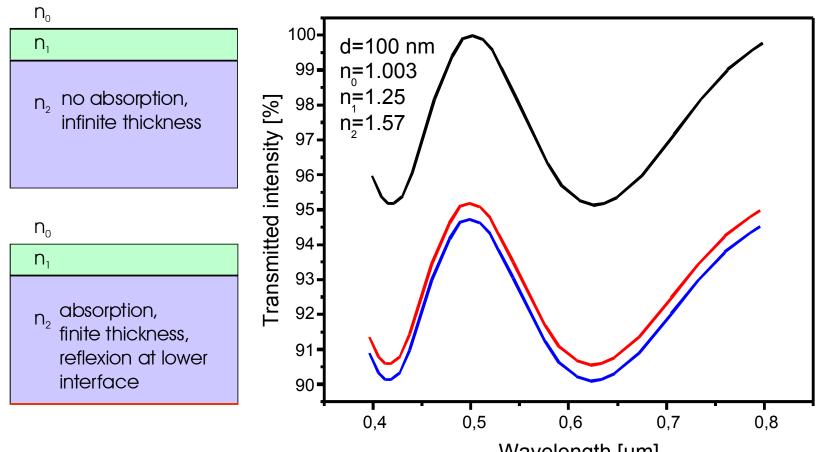
e requirement

quirement

With this tere is:

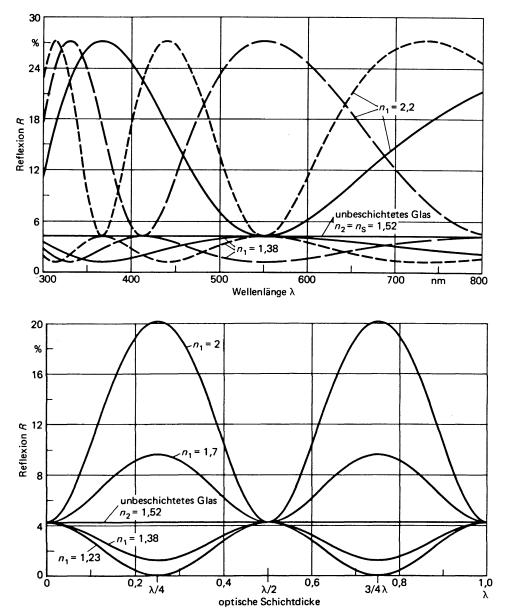
$$R_{\min} = \left(\frac{n_1^2 - n_0 n_2}{n_1^2 + n_0 n_2}\right)^2 \qquad \lambda_{\min} = \frac{4n_1 d_1}{2m - 1} \Rightarrow d_1^{\min} = \frac{2m - 1}{4n_1} \lambda$$
$$m = 1: d_1^{\min} = \frac{2 - 1}{4n_1} \lambda = \frac{1}{4n_1} \lambda$$
"\lambda/4 " - Schicht

Ideal und Real Thin Film System



Wavelength [µm]

Single Coating - General



Reflection/Wavelength

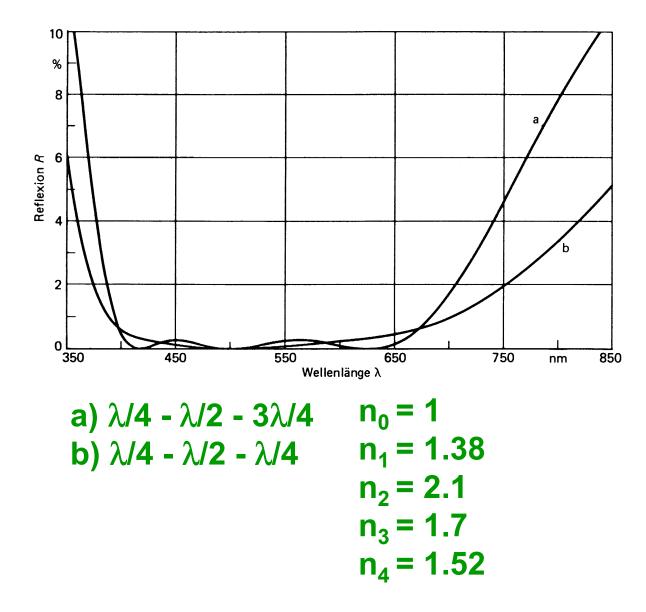
Reflection/Thickness

Single coatings do not allow for reflection suppression in a broad range of wavelengths.

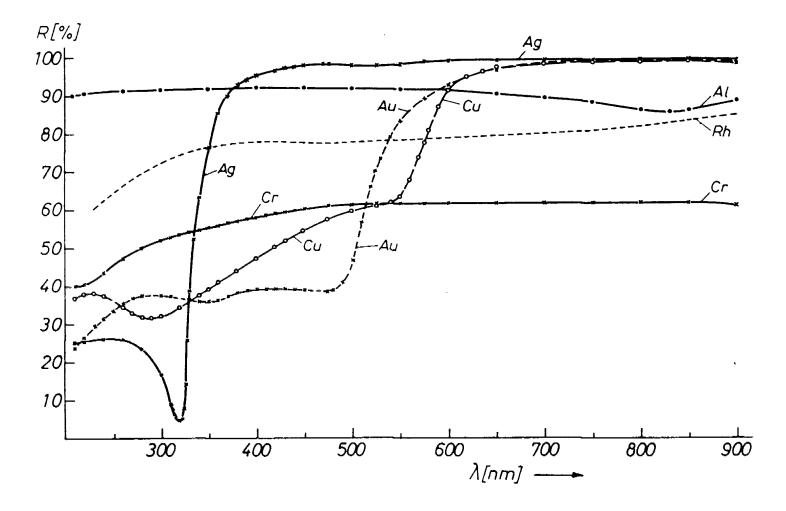
Application of systems consisting of multiple coatings

With multiple coating systems it is possible to generate reflection suppressing coatings in a wide spectral range on substrates with low indices of refraction (1,5-1,7).

Multiple Coatings - Example

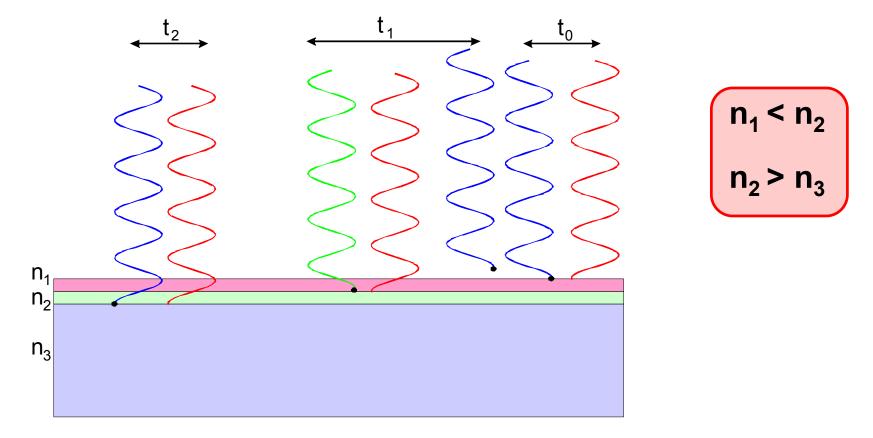


Reflection Enhancement: Metal Films



Reflection Enhancement: Dielectric Mirror I

System consisting of λ /4-coatings with alternating indices of refraction:



Reflection Enhancement: Dielectric Mirror II

A dielectric mirror consists of a multilayer made from $\lambda/4$ -coatings with alternating high (H) and low (L) indices of refraction.

Anzahl der	Reflexion in %	
Schichten	$n_{\rm L} = 1,38$ $n_{\rm H} = 2,3$ $n_{\rm s} = 1,51$	$n_{\rm L} = 1,47$ $n_{\rm H} = 2,3$ $n_{\rm s} = 1,51$
3	53,89	53,23
5	85,20	80,84
7	94,67	92,15
9	98,08	96,79
11	99,31	98,68
13	99,75	99,46
15	99,91	99,78
17	99,97	99,91
19	99,99	99,63

Further Optical Elements

With the thin film systems discussed so far it is possible to manufacture filter systems with almost arbitrary properties.

The basic elements are:

+ Reflection suppressing coatings
+ Interference coatings
+ Metal mirrors
+ Dielectric mirrors
+ Nanocluster (color centers and pigments)

These elements allow the realization of many optical systems.