Wiederholung: Mittlere Freie Weglänge

λ**p=5mmPa**

p = 1 Pa $\rightarrow \lambda$ = 5 mm p = 10⁻⁴ Pa $\rightarrow \lambda$ = 50 m

Wiederholung: Flächenstossrate

Wiederholung: Designkriterien

- Mittlere freie Weglänge λ: Beeinflusst im wesentlichen die Gasdynamik. Bereits bei relativ hohen Drücken (10-2 Pa) erreicht die Mittlere freie Weglänge die geometrischen Dimensionen der Beschichtungsanlage (λ ≈ 1m).
- Flächenstossrate Z:

Ist der wesentliche Parameter für die Schichtreinheit. Der Restgasdruck muss zumindest im mittleren Hochvakuum liegen, damit abgeschiedene Schichten eine hinreichende Reinheit aufweisen.

Der Aufdampfprozess

Schema:

Verdampfungsrate: Temperaturabhängigkeit

$$Z = Z(p,T,m) =$$

$$= a_{v} \cdot \frac{p^{*} - p}{m} \cdot \sqrt{\frac{m}{2 \cdot \pi \cdot k_{B} \cdot T}}$$

p* = Temperaturabhängiger Dampfdruck des Quellenmateriales a_v = Verdampfungskoeffizient

$p^*=p_0exp[-(E_V/(k_BT_Q)]$

Verdampfungsgeschwindigkeiten

Räumliche Verteilung der Dampfstromdichte

Infinitesimal in den Raumwinkel emittierte Masse dm:

 $dm = \frac{m_1}{2} \cdot \cos \alpha \cdot d\Omega$ $d\Omega = \frac{dA}{r^2} = \sin \alpha \cdot d\alpha \cdot d\phi$ **Normierung:** $\int_{-\infty}^{2\cdot\pi} d\phi \int_{-\infty}^{\overline{2}} \sin\alpha \cdot \cos\alpha \cdot d\alpha =$ $=2\cdot\pi\cdot\int_{0}^{1}\mathbf{u}\cdot\mathbf{du}=2\cdot\pi\cdot\frac{1}{2}=\pi$ $\Rightarrow \int dm = m_1$

Hertz-Knudsen-Formel

$$R(\alpha, \theta, r) = \frac{m_1}{\pi} \cdot \cos \alpha \cdot \frac{\cos \Theta}{r^2}$$

Planes Substrat:
$$R(\alpha, \theta, r) = \frac{m_1}{a^2 \cdot \pi} \cdot \cos^4 \alpha$$

$$R(\alpha, \theta, r) = \frac{m_1}{\pi \cdot a^2} \cdot \cos \alpha$$

Quelle im Pol (Knudsen-Kugel):

Halbkugel:

$$R(\alpha, \theta, r) = \frac{m_1}{\pi} \cdot \frac{1}{4 \cdot a^2} = const$$

a ... Abstand bzw. Radius der Kugeln

Verdampfungsquellen

Widerstandsgeheizte Quellen

Elektronenkanone

Dampfdruck in Legierungen I

Raoult'sches Gesetz:

Annahme: Legierung A/B als ideale Lösung:

$$W_{AA} = W_{BB} = W_{AB}$$

Behauptung: Dampfdruck der Materialien in Lösung ist kleiner als in Reinform:

$$p_A^* < p_A$$
 * ... in Lösung

Dampfdruck in Legierungen II

Beweis des Raoult'sches Gesetzes:

$$p_{A}^{*} = \int \underbrace{m_{A} \cdot u_{A}}_{\text{Im puls}} \cdot \underbrace{n_{A} \cdot u_{A} \cdot \Phi(u_{A}) \cdot du_{A}}_{\text{differentielle Flächenstossrate}}$$

$$p_{A} = \int n \cdot m_{A} \cdot u_{A} \cdot u_{A} \cdot \Phi(u_{A}) \cdot du_{A}$$

$$p_{A}^{*} = \frac{n}{n} \int n_{A} \cdot m_{A} \cdot u_{A}^{2} \cdot \Phi(u_{A}) \cdot du_{A}$$

$$p_{A}^{*} = \frac{n_{A}}{n} \underbrace{\int n \cdot m_{A} \cdot u_{A}^{2} \cdot \Phi(u_{A}) \cdot du_{A}}_{p_{A}}$$

$$p_{A}^{*} = \frac{n_{A}}{n} \cdot p_{A}$$

Raoult'sches Gesetz der Dampfdruckerniedrigung in Lösungen

Dampfdruck in Legierungen III

Raoult'sches Gesetz der Dampfdruckerniedrigung in idealen Lösungen:

$$p_{A}^{*} = \frac{n_{A}}{n} \cdot p_{A}$$

Raoult'sches Gesetz der Dampfdruckerniedrigung in nicht-idealen Lösungen:

$$\mathbf{p}_{\mathrm{A}}^{*} = \mathbf{f}_{\mathrm{A}} \cdot \frac{\mathbf{n}_{\mathrm{A}}}{\mathbf{n}} \cdot \mathbf{p}_{\mathrm{A}}$$

f_A ... Aktivitätskoeffizient

Verdampfen von Legierungen - Voraussetzungen

• Voraussetzung 1:

Es gilt das Raoult'sche Gesetz der Dampfdruckerniedrigung in Lösungen. Die vorliegende Legierung wird als ideale Lösung angenommen

Voraussetzung 2:

Die Lösung ist während des gesamten Verdampfungsvorganges homogen, das bedeutet, die Konstituenten sind im Schmelzgut immer homogen verteilt. Insbesondere existiert kein Zusammensetzungsunterschied zwischen Oberfläche und Volumen der Schmelze.

Verdampfen von Legierungen I

$$\frac{dN}{dA \cdot dt} = \frac{p}{\sqrt{2 \cdot \pi \cdot m \cdot k_{B} \cdot T}} = R_{evap} [m^{-2} \cdot s^{-1}]$$

$$\frac{dN}{dA} = dn \quad \begin{array}{l} \textbf{Teilchen verdampfen nur von der} \\ \textbf{Oberfläche} \\ \hline \textbf{Oberfläche} \\ \hline \textbf{d} \hline$$

Verdampfen von Legierungen II

Verhältnis der Änderungen der Teilchenzahlen in der Schmelze

$$\frac{dn_{A}}{dn_{B}} = \frac{p_{A}}{p_{B}} \sqrt{\frac{m_{B}}{m_{A}}} \cdot \frac{n_{A}}{n_{B}} = \kappa \cdot \frac{n_{A}}{n_{B}}$$

 n_A , n_B = Materialanteil des Stoffes A, B

 $p_A, p_B =$ Dampfdruck von A, B

$$m_A, m_B = Masse von A, B$$

 κ = Verdampfbarkeitskoeffizient

Verdampfen von Legierungen III

Das Verdampfen einer Legierung entspricht einer fraktionierten Destillation. Grund dafür ist der Materialtransport in der Schmelze, welcher immer für Nachschub der flüchtigen Komponente sorgt.

Spezielle Verdampfungsverfahren

Flash-Verdapmpfen

Mehrquellen-Verdampfen

Aufdampfmaterialien

Pulver Granulate Drähte Pellets Formteile

Es ist darauf zu achten, dass Quellenmaterial und Beschichtungsmaterial chemisch nicht miteinander reagieren!

Der Sputterprozess I

Elementarprozesse:

- • Beschichtungsgut
- 🗣 🔍 Arbeitsgas, ionisiert oder neutral

Besondere Kennzeichen:

- Feste Quelle, d. h. beliebige Quellenform
- Geringe Abscheidetemperatur
- Hohe Abscheideraten erreichbar
- Weites Parameterfeld
- Schichtzusammensetzung = Quellenzusammensetzung
- Gute Schichthaftung
- Interessante
 Schichteigenschaften

Der Sputterprozess - Teilchenemission

Arten der losgelösten Teilchen:

- Atome
- Ionen
- Cluster
- Moleküle
- Sekundärelektronen

Bereitstellung der Projektile:

- Gasentladung
- Ionenkanone

Die Gasentladung - Grundlagen

Kennlinie:

- I: Ohm'sches Verhalten
- II: Sättigungsbereich
- III: Stossionisation/

- Townsend-Entladung
- IV: normales Glimmen
- V: anormales Glimmen Sekundärelektronenemission

Die Gasentladung (Diodenentladung) - Schätzung

Die Grundlage einer Gasentladung ist, dass Elektronen in einem verdünnten Gas (p = 0.1 – 10 Pa) durch anlegen einer Spannung im kV-Bereich innerhalb der mittleren freien Weglänge λ genügend Energie zur Stossionisation der Gasatome gewinnen.

Abschätzung:

p = 1 Pa E_{ion} = 10 eV = W_{el} Elektrodenabstand d= 1m

Gesucht: Anzulegendes Potential U

$$\lambda_{1Pa} = 5 \text{ mm}$$

 $W_{el} = E \cdot e \cdot \lambda = \frac{U}{d} \cdot e \cdot \lambda$

$$\mathbf{U} = \frac{\mathbf{d} \cdot \mathbf{W}_{el}}{\mathbf{e} \cdot \lambda} = 2 \, \mathrm{kV}$$

Paschen - Gesetz

Der Zusammenhang zwischen dem minimalen Elektrodenabstand d, der Zündspannung U und dem Gasdruck p zum Zünden einer Gasentladung ist durch das Paschen-Gesetz gegeben:

- A, B: Gasartabhängige, empirische Konstante
- γ: Sekundärelektronenemissionskoeffizient

Die Gasentladung - Dunkelraum

Feld- und Potentialverhältnisse in der Gassäule:

Modifikationen der Diodenentladung

Zielsetzungen:

- a) Verkleinerung des Dunkelraumes
- b) Steigerung des Ionenstromes zwecks Ratensteigerung
- c) Druckverringerung des Hintergrundgases (Reinheit)
- d) Verbreiterung der Materialklasse (Halbleiter/Isolatoren)

Verfahrensmodifikationen:

- RF-Sputtern: c/d
- Triodensputtern: a-c
- Magnetronsputtern: a-c
- RF-Magnetron:
- Ionenstrahlsputtern: c; Ionenenergie wählbar

a-d

Hochfrequenzsputtern (RF-Sputtern) I

- f = 13,56 MHz (freigegebene Industriefrequenz)
- * Höhere Elektronendichte
- * Isolatoren können zerstäubt werden
- * Gasdruck kann verringert werden
- * Andere Plasmacharakteristik (EEDF, Plasmapotential)

Hochfrequenzsputtern (RF-Sputtern) II

Ein überschüssiger Elektronenstrom wird durch die höhere Elektronenbeweglichkeit erzeugt. Dieser bewirkt eine negative Nettospannung am Target, unabhängig davon, ob es leitet oder nicht.

Magnetron-Sputtern, Grundlagen I

Permanentmagnete hinter dem Target konzentrieren das Plasma in Targetnähe.

- * Dunkelraum wird verkleinert
- * Ionendichte wird vergrössert
- * Gasdruck kann verringert werden

Magnetron-Sputtern, Grundlagen II

Das Magnetfeld hält die leichten Elektronen auf Spiralbahnen (Loretz-Kraft) in der Nähe der Kathode. Ein Elektron kann daher in der Nähe des Targets wesentlich mehr Ionisierungsereignisse auslösen.

Magnetron-Sputtern: Magnetsysteme

Magnetron-Sputtern: Targeterosion

Beispiel: Magnetron-Sputtern - Kennlinien

Magnetronentladungen arbeiten bei wesentlich geringeren Gasdrücken!