
Einleitung

Details zur Vorlesung

LVA Nr. 138 032, "PHYSIK DÜNNER SCHICHTEN"

Kataloge: Master TPH, Kataloge: C, D, Master EMT, Katalog: B Master Materialwissenschaften, Modul Struktur- und Funktionswerkstoffe Christoph Eisenmenger-Sittner

Ort: Seminarraum DB gelb 07, 7.OG, Gelber Bereich

Zeit: 11:00-13:00

INHALT

- 1. Einführung: Geschichte, Begriffe
- 2. Physikalische Grundlagen der Vakuumbeschichtungsverfahren
- 3. Physik der Schichtbildung
- 4. Dünnschichtphysik
- 5. Grundlagen der physikalischen Analytik

Verweise I

LVA Nr. 138 030, "TECHNOLOGIE DÜNNER SCHICHTEN"

Kataloge: Ba TPH Ma TPH (D), Ma MW

Christoph Eisenmenger-Sittner

Ort: Seminarraum DB gelb 07, 7.OG, Gelber Bereich

Zeit: 11:00-13:00

INHALT

- 1. Einführung: Geschichte, Begriffe
- 2. Beschichtungsverfahren: PVD, CVD, Elektrochemie, ...
- 3. Schichtaufbau: Empirische Modelle
- 4. Schichteigenschaften und Charakterisierung: mechanische, elektrische und optische Eigenschaften sowie deren Messung

Verweise II

LVA Nr. 138 035, "PHYSIK DÜNNER SCHICHTEN - UE"

Kataloge: Ma TPH (C, D), Ma EMT (B)

Christoph Eisenmenger-Sittner

Ort: IFP, 7.OG, Gelber Bereich

Termin: Nach Vereinbarung

Dauer: 2.5 Tage

INHALT

- 1. Praktische Grundlagen der Vakuumtechnik
- 2. Selbstständiges Arbeiten an Beschichtungsanlagen
- 3. Charakterisierung von Schichteigenschaften: Dicke, Morphologie, optische Eigenschaften

Dünne Schichten im Netz

https://static.ifp.tuwien.ac.at/homepages/Personen/duenne_schichten/

Google Suchbegriffe: thin film group vienna

→ 1st Hit

DORT GIBT ES:

- Informationen zur Vorlesung (Termine, Verschiebungen etc.)
- Informationen zu aktuellen Arbeitsrichtungen
- Generelle Neuigkeiten

Ad-Hoc Informationen zur Vorlesung und zum Kurzpraktikum (Terminänderungen, endgültiger Praktikumstermin etc.) werden über TISS an alle Angemeldeten kommuniziert.

Historisches I

- ~1650: Beobachtung und Erklärung von Interferenzerscheinungen an dünnen Schichten (beispielsweise Ölfilm auf Wasser) durch R.Boyle, R.Hooke, I.Newton.
- ~1850: Beginn der Entwicklung der Beschichtungstechniken (M.Faraday; W.Grove: T.A.Edison) und der Schichtdickenmeßverfahren (Arago, Fizeau; Wernicke; Wiener)

 Galvanotechnik: kommerzieller Einsatz für Vergoldung von Uniformteilen.
- ~1940: Industrielle Erzeugung von Dünnschichtsystemen für optische, elektronische, mechanische und dekorative Anwendungen (zumeist im Rüstungsbereich).
- ~1965: Dünnschichttechnologie ermöglicht den Beginn der Massenfertigung in der Halbleiterindustrie und in der optischen Fabrikation.
- ~1990: Dünne Schichten für High Tc-Supraleiter.
- ~1995: Einsatz von Beschichtungsverfahren für die gezielte Herstellung atomarer und mesoskopischer Strukturen ("Quantum-Dots" durch PVD, "Cu-Technologie" durch Galvanotechnik in der µP-Technik).

Historisches II

- ~2000: Herstellung nanokristalliner Materialien definierter Zusammensetzung und Sruktur für den Einsatz als tribologische und protektive Schichten.

 Abscheidung geordneter Systeme von Objekten mit Grössen im Nanometerbereich.
- ~2004: Hochskalierung komplexer reaktiver Beschichtungsprozesse für Industrielle Anwendungen (Glasbeschichtung, thermal Management). Kombinatorische Untersuchung ternärer und quartärnärer Materialien.
- ~2006: Untersuchung und Charakterisierung organischer Schichten führt zu ersten Erfolgen in organoscher Elektronik (OLED, "printable circuits")
- ~2009: Kontrolliertes Wachstum von Nanotubes, Nanowires und nanoskaligen Heterostrukturen. Realisierung grossflächiger Graphenschichten.

Definition einer Dünnen Schicht

- Eine Lineardimension ist deutlich kleiner als die beiden Anderen
- Eigenschaften unterscheiden sich deutlich von denen des 3d Festkörpers ("Bulk")
- Eigenschaften können durch Schichtdicke und-Struktur beeinflusst werden
- Für gleiche Materialien können verschiedene Schichtdicken verschiedene Anwendungsbereiche definieren

Beispiel: Indiumoxid, In₂O₃:

d = 300 nm: Infrarotreflektor

d = 2 nm: Josephson - Effekt

Anwendungen Dünner Schichten, I

Maschinenbau/Verfahrenstechnik

- ... Tribologische Anwendungen: Schutzschichten gegen Verschleiß, Erosion, Korrosion; Reibungsarme Schichten
- ... Hartstoffschichten für Schneid- und Stanzwerkzeuge
- ... Oberflächenpassivierung
- ... Schutz gegen Hochtemperaturkorrosion
- ... Freitragende Schichten aus refraktären Metallen für Raketendüsen, Tiegel, Rohre
- ... Dekorative Schichten
- ... Katalysatorschichten

<u>Optik</u>

- ... Antireflexionsschichten ("Multicoated Optics")
- ... Hochreflektierende Schichten (Laserspiegel)
- ... Interferenzfilter
- ... Strahlenteiler und Dünnschicht-Polarisatoren
- ... Integrierte- und Laser-Optik

Optoelektronik

- ... Photodetektoren
- ... Bildübertragung
- ... Optische Speicher
- ... LCD/TFT

Anwendungen Dünner Schichten, II

Elektronik

- ... Passive Dünnschichtelemente (Widerstände, Kondensatoren, Kontakte)
- ... Aktive Dünnschichtelemente (Transistoren, Dioden)
- ... Integrierte Schaltkreise (VLSI, Very Large Scale Integrated Circuit)
- ... CCD (<u>Charge Coupled Device</u>)

Kryotechnik

- ... Supraleitende Dünne Schichten, Schalter und Speicher
- ... SQUIDS (Superconducting Quantum Interference Devices)

Neue Werkstoffe

- ... Extrem harter Kohlenstoff ("Diamant")
- ... Amorphes Silizium
- ... Metastabile Phasen: Metallische Gläser
- ... Ultrafeine Pulver (Durchmesser < 10nm)
- ... Sphäroidisierung hochschmelzender Werkstoffe (Durchmesser 1-500µm)
- ... Hochreine Halbleiter (GaAs)

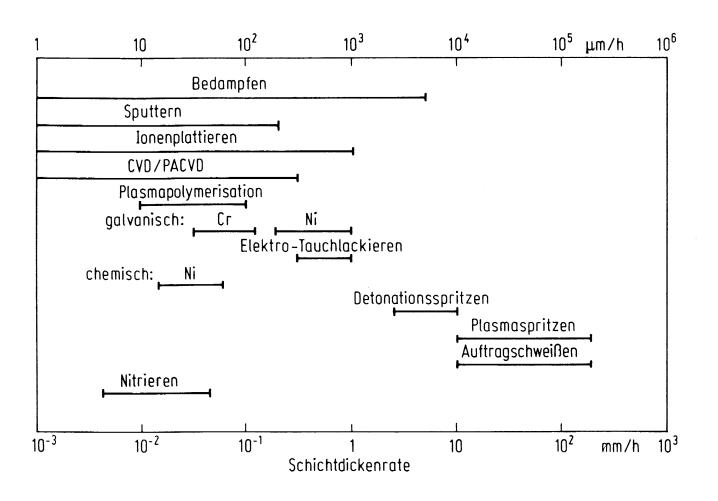
(Alternative) Energietechnik

- ... Solarkollektoren und Solarzellen
- ... Wärmedämmung durch Beschichtung von Architekturglas und Folien
- ... Thermische Isolation (metallbeschichtete Folien)

Anwendungen Dünner Schichten, III

Magnetische Anwendungen

- ... Audio-, Video- und Computerspeichermedien
- ... Magnetköpfe


Sensorik

- ... Messwerterfassung in aggressiven Umgebungen und Medien
- ... Telemetrie
- ... Biologische Sensorik

Biomedizin

- ... Biologisch kompatible Implantatbeschichtungen
- ... Neurologische Mikrosonden
- ... Hüllen für Depotpharmaka

Erzielbare Beschichtungsraten

Physikalische Beschichtungsverfahren

Wesentliche Kennzeichen:

- Definierte Trennung von Quelle, Transport und Abscheidung.
- Schichtbildung erfolgt Atom für Atom.
- Prozess findet in einer Vakuumumgebung statt.

Physikalische Beschichtungsverfahren – Überblick

PVD (Physical Vapour Deposition)

Aufdampfen

Sputtern

Dioden-System

Trioden-System

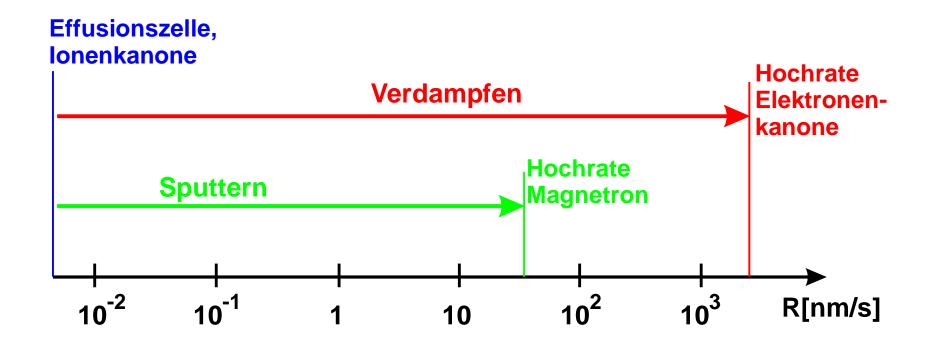
Magnetron-System ("balanced/unbalanced")

Ionenstrahl-System

Ionenplattieren

DC-Glimm-Entladung

HF-Glimm-Entladung


Magnetron-Entladung

Bogen (Arc)-Entladung

Ionen-Cluster-Strahl

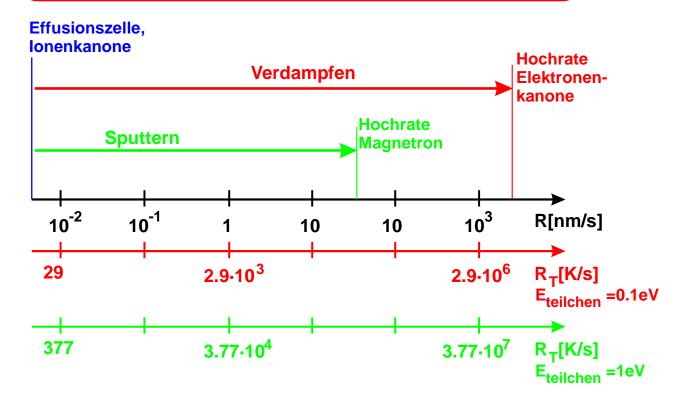
Reaktive Varianten der obigen Verfahren

Erzielbare Beschichtungsraten - PVD

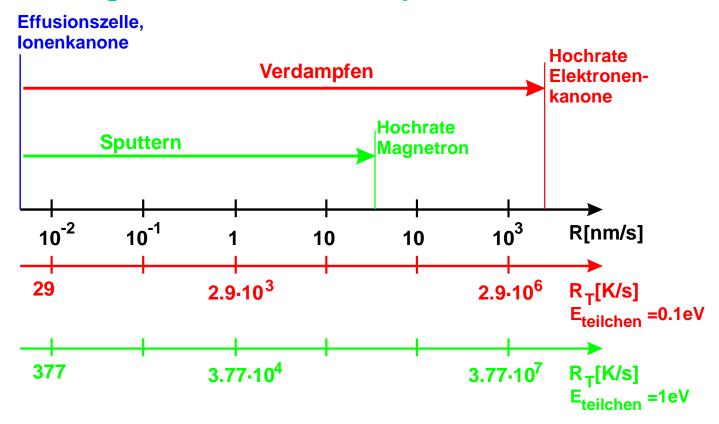
Definitionen PVD

- Substrat: Objekt, auf dem eine Schicht aufgebracht wird. Das Substrat kann plan oder geometrisch komplex geformt sein (Glasplättchen oder Messingzahnrad). Weiters kann es einkristallin (Si-Wafer), polykristallin (Metall) oder amorph (Glas) sein.
- Monolage: eine dicht gepackte Atom- oder Moleküllage auf dem Substrat. Bei einem Atomdurchmesser von ca. 0.3 nm entspricht dies etwa 10¹⁵ Atomen/cm² in einfacher quadratischer Anordnung. Für Moleküle müssen andere Durchmesser und geometrische Anordnunghen gewählt werden.

Grundlegende Thermodynamik PVD I


- ◆ Ananhme 1: Bis zur Bildung einer Monolage hat ein Atom Zeit, um eine thermodynmamisch günstige Position zu erreichen.
- Annahme 2: Teilchen die am Substrat auftreffen haben eine Energie E von ca. 1 eV. Das entspricht einer Temperatur T von etwa

$$T \cong \frac{E}{k_B} = \frac{1.602 \cdot 10^{-19} [J]}{1.38 \cdot 10^{-23} [J/K]} = 11600 K$$


Grundlegende Thermodynamik PVD II

Abkühlrate: Die vorhergehenden Annahmen erlauben die Berechnung einer Abkühlrate R_T:

$$R_{T}[K/s] = \frac{(E_{teilchen}[J] - E_{substrat}[J]) \cdot R[nm/s]}{k_{B}[J/K] \cdot 0.3[nm]}$$

Grundlegende Thermodynamik PVD III

Diese extrem hohen erzielbaren Abkühlraten zeigen, dass PVD - Prozesse (abgesehen vom direkten Übergang Gasphase → Festkörper) oft als Nichtgleichgewichtsprozesse gesehen werden können.

Abkühlraten im Vergleich

Amorphe Metalle erzielbar bei: 10⁴ K/s

Bleigiessen: 600K → 300K: 10³ - 10⁴ K/s

Melt Spinning: 10⁶ K/s

Splat Cooling: 10⁸ K/s

PVD: $10^{1} - 10^{7} \text{ K/s}$

Mittels PVD lassen sich nicht nur sehr hohe Abkühlraten erzielen, sondern die Wahl der Abscheiderate R ermöglicht auch das Überstreichen eines sehr grossen Abkühlratenbereiches.