
ACCURATE MEASUREMENT OF THE 
MAGNETOSTRICTION OF SOFT 

MAGNETIC MATERIALS 
 

R.Grössinger1), H.Sassik1), D.Holzer1), N.Pillmayr2)  
1) Institut f. Experimentalphysik, Technical  Tech.Univ.Vienna, 

    Wiedner Hauptstr. 8-10, A-1040 Austria 
2) KELAG Kärntner Elektrizitäts-AG, Klagenfurt, Arnulfplatz 2, Austria 

  
Abstract 

A survey of different measuring methods suited for soft magnetic materials is given. The 
methods are subdivided into direct and indirect methods. The SAMR method is best suited 
especially for low magnetostrictive ribbons. Experimental examples will be shown. 
  

1. Introduction 

In soft magnetic materials the magnetostriction is an important parameter determining the 
domain structure, the magnetization process and consequently the coercivity field. For very 
soft magnetic materials (low coercivity, high permeability) the magnetostriction λS has to be 
low whereas a high value of λS is interesting for the application of such a material for stress 
or strain sensors. The magnitude and the sign of the magnetoelastic energy determines the 
stress dependence of the hysteresis loop, which can be used for the sensor function. The 
magnetostriction is an intrinsic property of magnetic materials, which is for a crystalline 
material a direction dependent tensor λhkl which is mainly caused by the orbital coupling of 
the magnetic moment. From the  temperature and concentration dependence of λS  

conclusions about the corresponding mechanism are possible. Therefore the accurate 
determination of the magnetostriction is very important.  
The magnetostriction can be measured by direct and indirect methods. Direct methods are 
for example measurements with strain gauges, capacitance transducers or interferometers. 
For crystalline materials the use of strain gauges is most common. The most sensitive 
method is the capacitance method. All these methods have the disadvantage that they 
require a special sample preparation and they do not deliver the “true” saturation 
magnetostriction. Strain gauges are easy to handle but limited in sensitivity. Additionally the 
saturation magnetostriction constant has to be determined from measurements parallel and 
perpendicular to the external field.  
Indirect methods are the Becker-Kersten method [1] and the SAMR method [2] (Small angle 
magnetization rotation). For soft magnetic ribbons because of the special geometry beside 
the stress dependence of the hysteresis the SAMR method delivers very accurate results. 
This method can also be used from 4.2 K up to high temperatures. With the Becker-Kersten 
method the magnetostriction is determined from the stress dependence of the hysteresis 
loop. An overview about these methods can be found in reference [3]. A comparison of some 
available methods is presented in Table 1. 
 

Table 1  Comparison of some methods to measure magnetostriction 

Method Manner Sensitivity Remark 

Strain gauges Direct ±1 x 10-6 Determine λ// and λ⊥ independently, 

difficult to perform at high temperature 

Capacitance Direct ∼ ±10-10 Most sensitive method but also difficult 

to carry out at high temperature 

Stress dependence of 

hysteresis loop 

Indirect ∼ ±10-8 Good for negative and very small value 

of λs 



SAMR (Small Angle 

Magnetisation Rotation) 

Indirect ∼ ±10-9 High sensitivity, suitable for ribbons, 

usable at all temperature to determine λs 

Transverse susceptibility Indirect ∼ ±10-9 Variation of SARM method 

 

2 Experimental methods 

There are several ways to determine the magnetostriction using direct as well as indirect 
methods see e.g. the review of Lachowics in the Proceedings of the SMM Conference in 
Eger 1984 [4] and e.g. [5]. The actual selection of a certain measuring technique depends on 
the sensitivity, on the temperature range and also the sample geometry.  
 
2.1 The saturation magnetostriction  
 

The saturation magnetostriction constant λs characterizes the change in a linear 
dimension of a magnetic material in an external field and is in general a material tensor. The 
number of elements depends on the symmetry of the crystal structure. For isotropic materials 
the relative change in length depends on the angle between the magnetization vector and 
the strain. Therefore usually one takes an extrapolation from the strain of the high field range 
to zero and measures the values of elongation or contraction along the z-axis by applying an 
H-field parallel or perpendicular to z: λ = 3/2 λs (cos2 θ -1/3)   , see fig.1. 

 

 
Fig.1: Definition of the saturation magnetostriction measurement 

 
 

The free energy of a ferromagnetic sample is not equal in the crystallographic 
directions. This is called anisotropy. The magnetostrictive distortion is determined by the 
elongation derivative from the stress dependence of the anisotropy energy. The value of λs 

can be obtained by extrapolating the strains from the high field range to zero field: λs = 2/3 (λll 
- λ⊥). The factor (here 2/3) depends on the symmetry of the lattice. In the case of some 
texture this can lead to wrong λS values. Generally follows from this expression that (nearly) 
with all direct methods one has to determine both values: λll - λ⊥.    

Stress dependence: By taking the series expansion of the anisotropy and there the 
higher orders one realize that λs is determined by the stress dependent anisotropy and even 
the stress dependent magnetostriction itself: λs=2/3K1-4/3K2σ with the different anisotropy 
constants. 
 
2.2  Strain gauges 
 
Strain gauges consist of a thin meander shaped film where the resistance changes due to a 
change of length. This change of resistance can be measured using a bridge circuit. In Fig.2 
the general set up is shown.  



For crystalline materials the use of strain gauges for measuring the thermal expansion or the 
magnetostriction is most common since their development in 1947 (but very crucial: the 
applied strain gauges must be larger than the mean crystalline grains!). Usually full or half 
bridges are applied to compensate temperature changes during measurement. Application of 
dummies reduces also the influence of temperature and of magnetic field changes during 
measurements. If an ac-bridge is used the applied frequency limits dynamic measurements! 
The sensitivity is in the range of 1x10-6 running experiments from 4.2 K up to about 2000C 
depending on the sensor and the glue applied.  

 

Fig.2. Strain gauge 1 substrate, 2 wires, 3 glue, 4 meander, 5 sample. 

The strain gauge is glued on the sample , the wires are connected with a resistance bridge. 
The change of the resistance is proportional to the local elongation ε :  
   ( )∆R R k k E= =ε σ                             (1) 
The k-factor gives the sensitivity; it is for metallic strain gauges close to 2. At low 
temperatures and at high fields deviations due to the magnetoresistance of the material can 
occur.  
The field influence can be reduced applying a second strain gauge (on a nonmagnetic 
sample) in the neighboring part of the bridge. In this case the magnetoresistive but also 
thermal contributions are cancelled. Using the strain gauge method for measuring the 
magnetostriction of a polycrystalline sample needs to measure parallel and perpendicular to 
the field axis.  
 
2.3  Direct displacement method 

 
A direct way is the measurement of a displacement caused by the external magnetic 

field performed by mechanical or optical methods as e.g. micrometer screw, dilatometers or 
reflection of a laserbeam or interferometry reaching a sensitivity of about 10-11 . One 
sophisticated example is the method of a tunneling tip strain detector by Brizzolara 1990 [6] 
similar to a scanning tunneling microscope reaching a sensitivity of about 10-9 (see fig.3). In 
all these cases one can measure of course the magnetostriction itself, but also, very 
important for actuators, the elongation/ contraction as a function of the magnetic field in 
absolute values! 

 



 
Fig.3: Schematic diagram of the tunneling tip method for measuring the magnetostriction and 
the displacement values itself. 

 
 
The most sensitive method is the capacitance method based on the principle of 1920 

"ultramicrometer" and can be applied in a wide temperature range, see fig.4 [5], [7]. The so-
called cantilever- capacitance method is adapted to thin films [8] 1964 and can be used by 
measuring the value of ∆C over a changing resonance frequency. Also in this case one can 
measure the magnetostriction, but also, very important for actuators, the elongation/ 
contraction as a function of the applied magnetic field in absolute values! The sensitivity of 
the capacitor method can be up to 10-8, however due to the dimensions of the set-up one 
measures usually only λll. Therefore the determination of the physically interesting λS is not 
possible. Only if single crystals are available one can determine the elongation in certain 
crystallographic direction however only parallel to the external field. Fig.4 shows a variation 
of the capacitance method suited for measuring the thermal expansion and the 
magnetostriction of amorphous ribbons [9]. In this case the chance of length of the sample 
(1) is transmitted over a mechanical system (3,5) to a condensator set-up (13,14). With a 
sensitive ac-bridge the change of capacitance ∆C which is proportional to the chance of 
length ∆l can be determined.  

 



 
 

Fig.4: Principle of a capacitance measuring method of long ribbons. 
 
Of course x-ray diffraction experiments determining the field dependence of the lattice 

constants is a direct way, however due to the long measuring time this method is seldom 
used. Here the use of high intense synchrotron radiation may open new possibilities. 

The measurement of the magnetostriction coefficients on sufficient large single 
crystals using strain gauges is a very successful method, but for many technical relevant 
samples good single crystals are not available.  

 

2.4 Indirect methods 

Usually indirect methods are applied utilizing a well known dependence of a physical 
quantity on strain or displacement due to the magnetostriction or the inverse way (Villary 
effect) in which a particular magnetic parameter are a mathematical function of the stress 
applied.  

 



The strain modulated ferromagnetic resonance was introduced 1963 [12] and 
successfully applied to garnets and spinel ferrites. Films and ribbons can be examined and 
values of λs near 10-9 are detectable, but it is restricted to thin samples because of the high 
frequency based low skin depth.  

For soft magnetic ribbons because of the special geometry the SAMR method 
delivers very accurate results. This method can also be used from 4.2 K up to high 
temperatures. It was originally developed 1969 by Konishi and adopted by Narita 1980 [2]. 
Hernando reached values of λs near 10-9 [10], [11] . Some sophisticated, but related methods 
are also in use [4], [5] as e.g. the stress dependencies of the transverse susceptibility (by 
Kraus 1989 [14]): an aligning static field Hdc is applied perpendicular to the ribbon axis and 
additionally an external stress is applied. The problem with this method is the unfavorable 
demagnetizing factor.  More simple is the stress dependence of the hysteresis loop (Becker 
Kersten 1930 [1]) which works very well especially for materials with λS < 0. Another 
possibility is to measure the effect or rotation on the magnetization due to twisting a ribbon or 
the effect of the field dependence of the sound velocity of a magnetoelastic wave. These 
methods are mainly restricted to negative values of λs .  

 
2.4.1 Stress dependent hysteresis loop 

 
The very old, but simple and interesting method was first described by Becker, 

Kersten 1930 and uses the static hysteresis loop by applying different longitudinal stresses, 
see fig.5. It is easy to handle for ribbons with negative and slightly positive magnetostriction 
values. 

 
 

Fig.5: Static hysteresis loop of different amorphous ribbons under external stress 
 
 

In the case of negative magnetostriction the vector of magnetization is rotated out of 
the ribbon axis, thus the field Hs being necessary to saturate the materials will increase with 
increasing external stress. Minimizing the free energy F=Estat +Eel =µ0MsHscosθ+3/2λsσ sin2θ 
with respect to the angle leads to λs = -1/3 µ0Msd dHs /dσ. For the measurements with this  
method the law of approach to saturation has to be considered too. See fig.6: The applied 
field to reach 90% of saturation is measured as a function of stress: 



 

 
Fig.6: Required field to reach 90% of saturation as a function of external longitudinal stress 
for an as cast ribbon of Co67Fe7(MoSiB)29. 
 
 
2.4.2 The principle of the SAMR 

 
In Fig.7 the principal set-up of the SAMR method is shown. A small angle (a few 

degrees) magnetization rotation in the ribbon plane is caused by a small AC field Hac 
perpendicular to the axis. A constant DC field HDC aligns the magnetic moments. Additionally 
a stress σ is applied on the ribbon. The total energy is in this case: 

 
F= -Hdc Js cosθ -Hac Js sinθ +3/2 λs σ sin2θ +1/2 Js

2(Npacos2θ +Npesin2θ)  (2) 
 

leading to an expression for the value of the deflection angle where θ(t) = α +θ0 sin (ωt), 
coming from local inhomogeneties as quenched in stresses. The definition of the angles in 
the ribbon plane is shown in Fig. 7. The induced measuring signal in the pickup system  can 
mathematical be separated into the 1. and 2. harmonics, where the fundamental one is 
extremely small and usually constant depending only on the inhomogeneties and can be 
eliminated by the lockin amplifier, see fig.8, the block diagram of the SAMR-method. The 2. 
harmonic contains the information about the magnetostriction. The amplitude of the second 
harmonics has to kept constant as a function of the stress by tuning the corresponding DC-
field. 

 
The deflection angle  is detected by a pickup system wound around the ribbon. Under 

applied stress the DC field is changed as long as the pickup signal is the same. The 
application of a lockin amplifier is useful in order to suppress the fundamental wave as well 
as to improve the signal to noise ratio. A detailed calculation of the method is found in  [3] 
starting from the total energy consisting of magnetostatic, magnetoelastic energy and a term 
with the demagnetizing factors (shape anisotropy). Minimizing the free energy F leads finally 
to an expression for the saturation magnetostriction:  
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Because the area of ribbons is often not simple to determine it is senseful for the 
ribbon geometry to replace the saturation polarization by the direct measurable flux Φ  and 
the stress by the force F. 
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Fig.7: Schematic presentation of the SAMR-Method, the rotation of the magnetization in the 
ribbon plane. 
 

 
Fig.8: Block diagram of the SAMR-method 

 
 
The SAMR method is based on the assumption that HDC saturates the sample. This is 

not always the case - therefore it should be mentioned that even soft magnetic materials are 



not easy to saturate, this means that the law of approach to saturation not only describes the 
high field magnetization but also the value of the magnetostriction, as can be seen in the 
following picture 9: 
 

 
Fig.9: Magnetostriction (∇) and magnetization (o) as a function of 1/H2 of amorphous 
Fe76Si12B12 in the as cast state. The line represents a linear fit with a fit constant a2. 
 
 

The determination of the saturation magnetostriction becomes much more 
sophisticated, when the value is extremely small, as can be the case in Co-rich λs -zero 
ribbons, where a stress dependence of the magnetostriction can be detected. 
• Stress dependence of the magnetostriction: The stress dependence of the magnetostriction 
occurs mainly at high external stresses. This effect is usually only detectable on small 
magnetostrictive alloys (λs < 10-7). An example for the stress dependence of the 
magnetostriction is shown in Fig.10.   
In the case of a stress dependent magnetostriction the measured values Hdc(σ) will not show 
a linear behavior. An additional quadratic term is used to describe the stress dependent 
effects: 
 
  H H kdc = + ⋅ + ⋅0

2σ κ σ  (5) 
 
The fitting procedure delivers the parameters k and κ and then the magnetostriction value 
and its stress dependence can be determined: 
 

  ( )λ σ
σ

κ σS S
dc

S SJ
dH

d
J k J= − 



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= − ⋅ − ⋅ ⋅1
3

1
3

2
3

 (6) 

 
 The magnetostriction at zero stress is given by:   
 

  ( )λ σS SJ k= = − ⋅0
1
3

 (7) 

The stress dependence of the magnetostriction is calculated by: 
   

  
d
d

JS
S

λ
σ

κ= − ⋅2
3

 (8) 

 
 
 



 
Fig.10: The stress dependence of the anisotropy field HA which is proportional to the 
magnetostriction of a Vitrovac 6030F ribbon with extremely small magnetostriction constant. 
 

 
2.4.3 The transverse susceptibility 

 
This method is similar to the SAMR, it was developed by Kraus [14] but has only a 

changed geometry. The symbols are equivalent to the SAMR, but only the demagnetizing 
field has to be considered in detail. Also there from the magnetoelastic contribution the 
saturation magnetostriction constant is determined. 
 

 

 
Fig.11: Schematic presentation of the transverse susceptibility method. The ribbon plane 
coincidences with the plane of the figure. 

 

3 Experimental example and analysis 

 In this section as an example selected results and an analysis of the temperature 
dependence of the magnetostriction as measured on amorphous Fe85-xCoxB15 is given. Fig. 
12 shows the temperature dependence of the magnetostriction in the low temperature range. 
First of all a phenomenological description of the magnetostriction is given. The 
magnetostriction shows nearly a linear behavior with temperature. Note that this linear 
behavior does not exclude that the magnetostriction scales with MS

2(T) or MS
3(T). It can be 

shown that especially in the high temperature range a linear behavior follows the theory.  A 
better description of its low temperature dependence is given by a T3/2 law. 
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Fig.12. Temperature dependence of magnetostriction in the low temperature range 

 
 

Fig. 13 shows that the slope of the magnetostriction is higher when the magnetostriction itself 
is high. Also the magnetostriction depends on the temperature dependence of the 
magnetization which is in the low temperature range related to the spin wave stiffness 
constant. Based on these assumptions a corresponding fit was tried which describes the 
magnetostriction behavior: 
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Fig.13. Temperature dependence of magnetostriction in the low temperature range and theory (line) 
 
In a first order approximation assuming a one ion behavior in the low temperature range the 
magnetostriction is proportional to MS

3, whereas assuming a two ion origin corresponds to a 
MS

2 proportionality: 
One-ion model Two-ion model 

λS α MS
3 λS α MS

2 
The magnetization below room temperature can be very well described by Bloch's law, so 
one can combine these two theoretical suggestions: 
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Generally the values of T0 can be quite high (between 1000-3000 K). Therefore the ratio of 
T/T0 is quite small and one can make an approximation and rewrite the equations: 
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where Dsp is the spin wave stiffness constant and the factor k1 results from the theory of the 
spin waves. The exact expression is given by: 
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Depending on the used units for the spin wave constant Dsp one obtains for this factor: 

( )k
M1

65

0

7 019 10
0

= ⋅ −.
µ
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This gives for the magnetostriction behavior in the low temperature range: 
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Taking into account that for the spin wave stiffness constant the unit meVA
o

2 is often used 
one finally obtains the following formula (with n=3 for one-ion and n=2 for two-ion behavior): 
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As in Fig. 13 shown the measurements agrees very well with the theoretical predictions 
(factor n is between 2 and 3). For samples of the composition  Fe85-xCoxB15 in general a 
decreasing factor n with decreasing magnetization M(0) was found, which corresponds to an 
increasing Co-content. Therefore as an approximation which is valid for many samples one 
obtains: 
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with a factor k between 0.045 and 0.058. T is the temperature in Kelvin, Dsp is the spin wave 

stiffness constant in meVA
o

2. Other experimental examples as e.g. measurements on pure 
Fe85B15 and on Finemet can be found in [13,15].  
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