
Repetition: Physical Deposition Processes

PVD (Physical Vapour Deposition)

Evaporation

Sputtering
Diode-system
Triode-system
Magnetron-system ("balanced/unbalanced")
Ion beam-system

Ionplating
DC-glow-discharge
RF-glow-discharge
Magnetron- discharge
Arc-discharge
Ion-Cluster-beam

Reactive versions of the above processes



Repetition: Rates and Cooling Rates PVD

These extremely high cooling rates show, that PVD 
processes (apart from being a direct transition from 
vapor !!!! solid state) always have to be considered as 
non equilibrium processes.
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Vacuum Physics 

Mean free path: the way a gas particle (or a film 
particle) can travel  without a collision with another 
particle.

Impingement rate: number of particles which hit a 
surface per second and unit area at constant 
pressure.

Coverage time: time needed for the formation of a 
full monolayer.  

Central Termini:



Mean Free Path I
Collision of two particles, 1 and 2 with radius r = R/2:

2r
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σ
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If both particles are considered as points then a collision 
happens, if particle 1 is located within a disk of the  area 
σσσσ = ππππ·R2. σσσσ is called the collision cross section.



Mean Free Path II
Aparticle moves straight for a distance l through a gas. 
Within a cylinder of the volume V = l·σσσσ it will collide with 
each particle located in V.

l

σ

The cylinder contains  N = n · V particles. For straight 
movement this is the collision number.



Mean Free Path III
One collision happens if N = 1. This yields the mean free 
path λλλλ as:
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Macroscopic information: Particle density n,
from the ideal gas equation.
Microscoic information: Collision cross section σ,σ,σ,σ,
contains energy dependent atom/molecule radii or 
the general interaction cross sections of the colliding 
particles.   



Mean Free Path IV
State of movement of the background gas:
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Energetic
coating particle: relative 
movement may 
be neglected

Gas particle:
relative movement
may not be neglected
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Mean Free Path - Example
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Mean Free Path - Rough Estimate

λλλλp=5mmPa
p = 1 Pa !!!!λλλλ = 5 mm 
p = 10-4 Pa !!!!λλλλ = 50 m 
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Mean Free Path: Scale Consideration

λλλλp=5mmPaCERN � LHC:
U = 2·4.3 ·ππππ= 27 km
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Within LHC a pressure of 
approx. 10-9 mbar has to be 
maintained, to exclude 
interparticle collisions.



Gas Phase Transport
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A significant number of collisions happens before 
the mean free path is reached.
Only approx. 37% of the particles reach λλλλ without a 
collision.
The mean free path is only a statistical measure. 

This means:

Clausius' law of distance:



Gas Phase Transport - Statistics
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Consider large ensemble of single situations:

Calculate the expectation value of free throw distances:



Areal Impingement Rate I
Initial situation: Gas molecules hit surface

Wanted: number of gas molecules, which hit the unit 
surface within 1 second.



Areal Impingement Rate II
Approach: cylinder with unit top areas, heigth u. 

Only particles with a  velocity component u in the 
direction of e1, which trespass the top cylinder surface 
reach the surface within unit time. 

Differential areal 
impingement rate:
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Areal Impingement Rate III

Differential areal 
impingement rate:
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Areal impingement rate IV
Calculation of the total areal impingement rate:  

Tk2
m

m
p

Tk
pn

V
N

m
Tk

Tk2
mndueu

Tk2
mn

du)u(undzZ

BB

B

B

m
Tk

0

Tk2
um

B

00
u

B

B

2

⋅⋅π⋅
⋅=

⋅
===

=⋅
⋅⋅π⋅

⋅=⋅⋅
⋅⋅π⋅

⋅=

=⋅Φ⋅⋅==

⋅

∞
⋅⋅

⋅−

∞∞

∫

∫∫

4434421



Areal Impingement Rate V

Z = Z(p,T,m)=

Tk2
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Z = 2.7·1017 s-1cm-2

etwa 270 ML/s

m= 5.3·10-26 kg (O2)
kB=1,38.10-23J/K
T = 300K

p = 0.1 Pa 

Z = 2.7·1014 s-1cm-2

etwa 0.2 ML/s

p = 10-4 Pa 



Areal Impingement Rate - Graphic



Types of Vacuum

Name Pressure [Pa] Mean free Coverage time
path [mm] O2, 300K [ML/s]

Rough vacuum Atm!!!!1 5·10-5!!!!5 2.7·105 !!!! 2700
Fine vacuum 1 !!!!0.1 5 !!!!50 2700 !!!! 270
High vacuum (HV) 0.1 !!!!10-5 50!!!!5·105 270 !!!! 0.027
Ultra high vacuum (UHV) 10-5 !!!!10-10 5·105!!!!5·1010 0.027 !!!! 2.7·10-7

Extreme UHV (XHV) <10-10 5·1010!!!! 2.7·10-7 !!!!

5·105 mm  ≡ 500 m 
5·1010 mm ≡ 50 000 km (!)



Types of Pumps

Gas transporting:
+ Rotary pump Rough vacuum/fine vacuum
+ Diffusion pump  High vacuum
+ Turbomolecular pump High vacuum

Gas adsorbing:
+ Cold traps Fine vacuum
+ Cryo pumps High vacuum/UHV
+ Sublimation pumps UHV
+ Getter pumps UHV

reactive gases
+ Ione getter pumps UHV

inert molecules (activation)



Flow Types

Laminar/turbulent: Rough vacuum/fine vacuum

Flow through a pipe, diameter d:

Molecular: High vacuum, UHV 

d<<λ

d>>λ

Particle collisions
probable, 
global flow

Wall collisions
probable,
no flow

d
λ

d
λ



Flow Types and Pumping Systems

Efficient in the laminar region:
+ Gas transporting pumps:

Rotary pump
Ejector pump

+ Rotary pumps, except Turbomolecular pumps

Efficient in the molecular region :
+ Gas transporting pumps:

Diffusion pump
Turbomolecular pump

+ Gas adsorbing pumps



Design Criteria for Vacuum Systems

Mean free path λλλλ:
+ Choice of pump type
+ Pump velocity
+ Dimension of pipe diameters

Areal impingement rate Z:
+ Coverage times (e. g. surface analytics)
+ Impurity content in coatings (ratio

of impingement rate of the coating particles 
and of the background gas particles)



Impurities

High sticking coefficient αααα ≈ 1 (ZDes ≈ 0):
Reactive gases:

O2
H20
Complex carbohydrates (pump oil)

Low sticking coefficient αααα << 1 (ZDes ≈ Z):
Inert gases:

Noble gases
N2
CH4
Carbohydrates without reactive groups

Sticking 
coefficient αααα: Z

Z1 Des−=α Z    ... Ipingement rate
ZDes... Desorption rate



Impurities: Example

Coating material: Al, m = 4.5·10-26 kg
Rate Al: 10 nm/s = 3 ·1019 At/(m2s-1)
Impurity: O2, m = 5.3 ·10-26 kg
Sticking coefficient αααα: approx. 1 für Al und O2
Temperture: 300K
Wanted: Background gas pressure, at which 1% 
Oxygen is incorporated unto the coating
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Design Criteria: Summary

Mean free path λλλλ:
Influences gas dynamics. Even at rather high 
pressures (10-2 Pa) the mean free path reaches 
the dimensions of average deposition chambers .

Areal impingement rate Z:
Crucial for coating purity. The pressure of the 
background gas has to be at least in the medium 
high vacuum to guarantee sufficient film purity.


