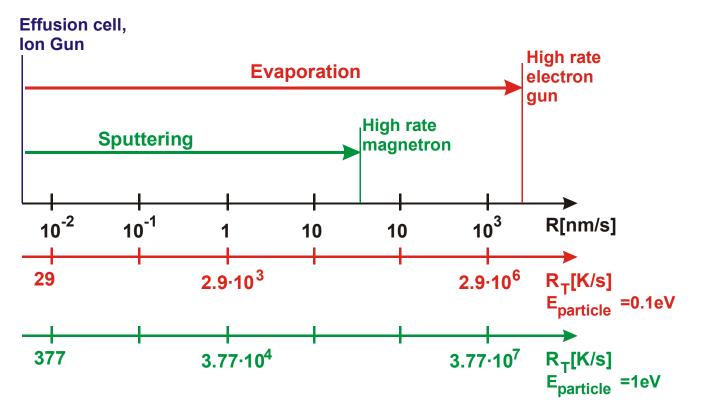
Repetition: Physical Deposition Processes

PVD (Physical Vapour Deposition)


Evaporation

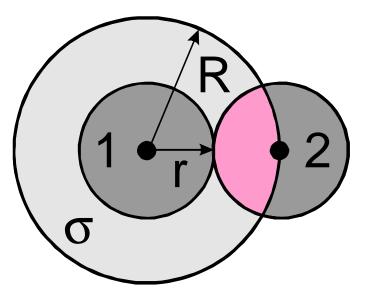
Sputtering Diode-system Triode-system Magnetron-system ("balanced/unbalanced") Ion beam-system

Ionplating DC-glow-discharge RF-glow-discharge Magnetron- discharge Arc-discharge Ion-Cluster-beam

Reactive versions of the above processes

Repetition: Rates and Cooling Rates PVD

These extremely high cooling rates show, that PVD processes (apart from being a direct transition from vapor \rightarrow solid state) always have to be considered as non equilibrium processes.


Vacuum Physics

Central Termini:

- Mean free path: the way a gas particle (or a film particle) can travel without a collision with another particle.
- Impingement rate: number of particles which hit a surface per second and unit area at constant pressure.
- Coverage time: time needed for the formation of a full monolayer.

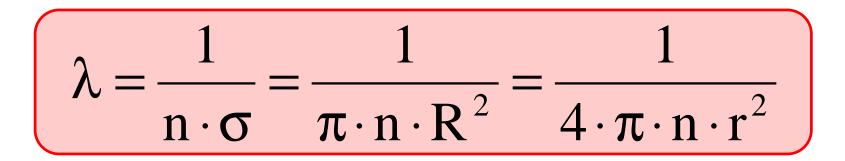
Mean Free Path I

Collision of two particles, 1 and 2 with radius r = R/2:

If both particles are considered as **points** then a collision happens, if particle 1 is located within a disk of the **area** $\sigma = \pi \cdot R^2$. σ is called the collision cross section.

Mean Free Path II

Aparticle moves straight for a distance I through a gas. Within a cylinder of the volume V = $I \cdot \sigma$ it will collide with each particle located in V.

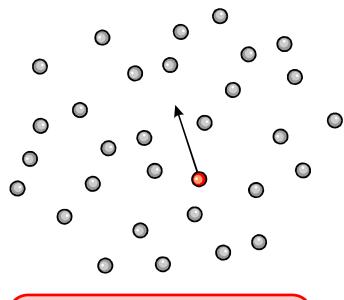


The cylinder contains $N = n \cdot V$ particles. For straight movement this is the collision number.

Mean Free Path III

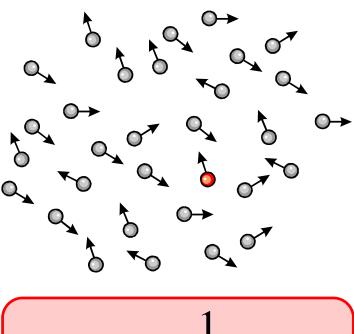
One collision happens if N = 1. This yields the mean free path λ as:

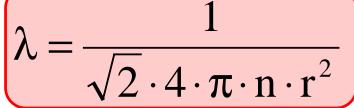
$$N \equiv 1 \Longrightarrow n \cdot V = n \cdot \lambda \cdot \sigma = 1$$



- Macroscopic information: Particle density n, from the ideal gas equation.
- Microscoic information: Collision cross section σ, contains energy dependent atom/molecule radii or the general interaction cross sections of the colliding particles.

Mean Free Path IV


State of movement of the background gas:


Energetic coating particle: relative movement may be neglected

$$\left(\lambda = \frac{1}{4 \cdot \pi \cdot n \cdot r^2}\right)$$

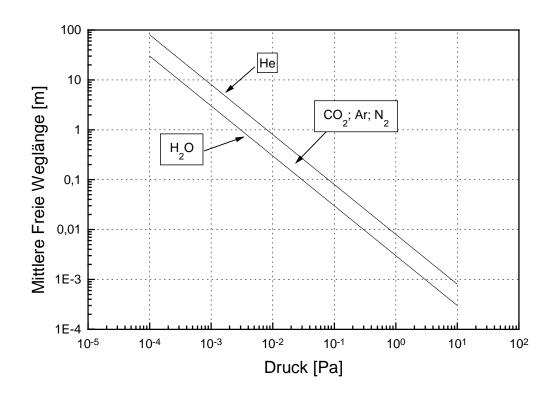
Gas particle: relative movement may not be neglected

Mean Free Path - Example

$$\lambda = \frac{1}{4 \cdot \pi \cdot n \cdot r^2} \qquad p \cdot V = N \cdot k_B \cdot T \Longrightarrow \frac{N}{V} = n = \frac{p}{k_B \cdot T}$$

p = 0.1 Pa k_B=1,38·10⁻²³J/K T = 300K

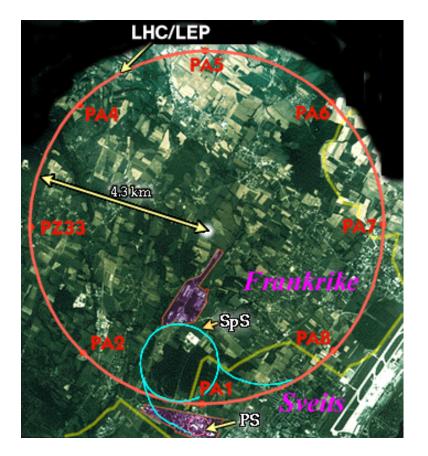
$$r = 1.5 \cdot 10^{-10} m$$


$$\lambda = \frac{k_{\rm B} \cdot T}{4 \cdot \pi \cdot p \cdot r^2} =$$

$$=\frac{1.38 \cdot 10^{-23} [J/K] \cdot 300 [K]}{4 \cdot \pi \cdot 0.1 [J \cdot m^{-3}] \cdot 1.5 \cdot 10^{-10} [m^{2}]} =$$

= 14.6 cm

Mean Free Path - Rough Estimate


λ**p=5mmPa**

p = 1 Pa $\rightarrow \lambda$ = 5 mm p = 10⁻⁴ Pa $\rightarrow \lambda$ = 50 m

Mean Free Path: Scale Consideration

CERN – **LHC**: **U** = $2 \cdot 4.3 \cdot \pi = 27$ km

λ**p=5mmPa**

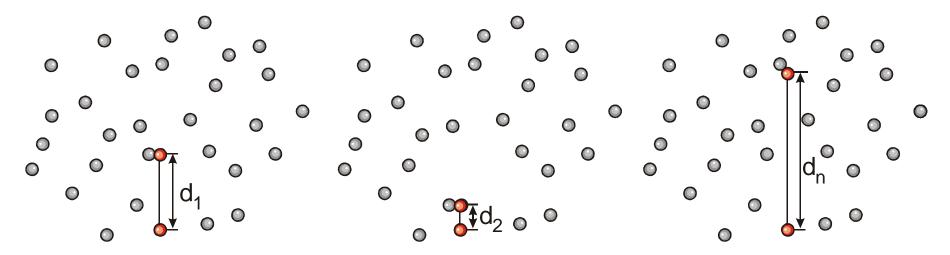
$$\lambda[mm] = \frac{5}{p[Pa]}$$

$$p[Pa] = \frac{5}{\lambda[mm]} = \frac{5}{2.7 \cdot 10^7} =$$

$$= 1.8 \cdot 10^{-7} Pa = 1.8 \cdot 10^{-9} mbar$$

Within LHC a pressure of approx. 10⁻⁹ mbar has to be maintained, to exclude interparticle collisions.

Gas Phase Transport

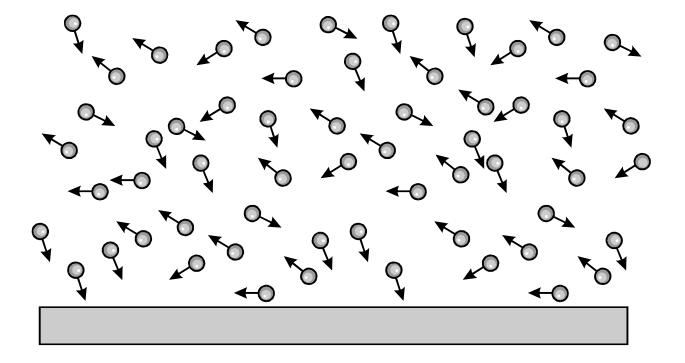

Clausius' law of distance:

$$N(x) = N(0) \cdot \exp\left[-\frac{x}{\lambda}\right]$$

This means:

- A significant number of collisions happens before the mean free path is reached.
- Only approx. 37% of the particles reach λ without a collision.
- The mean free path is only a statistical measure.

Gas Phase Transport - Statistics Consider large ensemble of single situations:

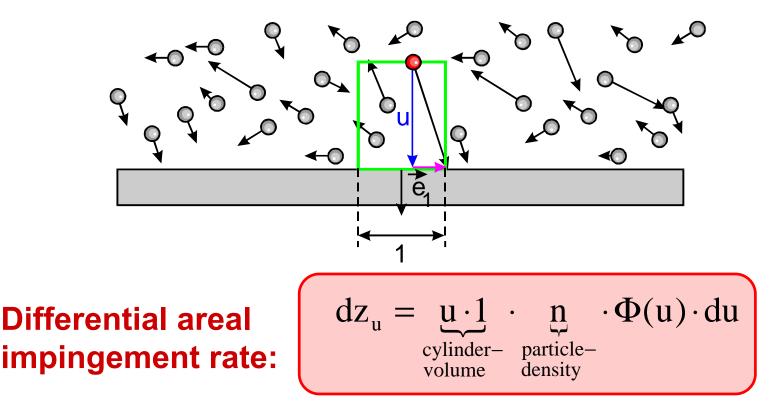


Calculate the expectation value of free throw distances:

$$\left\langle d\right\rangle = \frac{\int_{0}^{\infty} x \cdot exp\left[-\frac{x}{\lambda}\right]}{\int_{0}^{\infty} exp\left[-\frac{x}{\lambda}\right]} = \lambda$$

Areal Impingement Rate I

Initial situation: Gas molecules hit surface



Wanted: number of gas molecules, which hit the unit surface within 1 second.

Areal Impingement Rate II

Approach: cylinder with unit top areas, heigth u.

Only particles with a velocity component u in the direction of $\vec{e_1}$, which trespass the top cylinder surface reach the surface within unit time.

Areal Impingement Rate III

Differential areal impingement rate:

Total areal impingement rate:

$$dz_{u} = \underbrace{u \cdot 1}_{\substack{\text{cylinder-} \\ \text{volume}}} \cdot \underbrace{n}_{\substack{\text{particle-} \\ \text{density}}} \cdot \Phi(u) \cdot du$$

$$Z = \int_{0}^{\infty} dz_{u} = n \cdot \int_{0}^{\infty} u \cdot \Phi(u) \cdot du$$

Maxwell-distribution of one velocitycomponent:

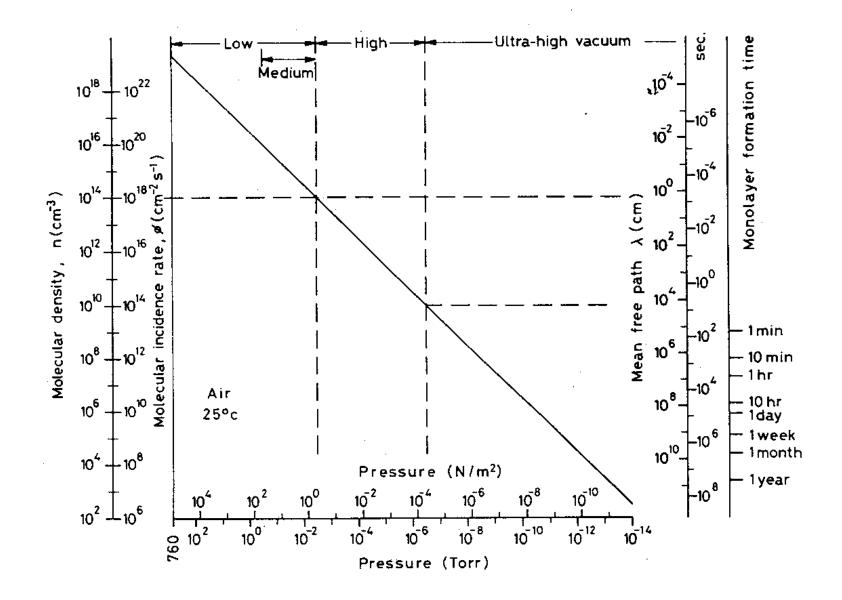
$$\Phi(\mathbf{u}) = \sqrt{\frac{\mathbf{m}}{2 \cdot \pi \cdot \mathbf{m} \cdot \mathbf{k}_{\mathrm{B}} \cdot \mathbf{T}}} \cdot \mathrm{e}^{-\frac{\mathbf{m} \cdot \mathbf{u}^{2}}{2 \cdot \mathbf{k}_{\mathrm{B}} \cdot \mathbf{T}}}$$

Areal impingement rate IV

Calculation of the total areal impingement rate:

$$Z = \int_{0}^{\infty} dz_{u} = n \cdot \int_{0}^{\infty} u \cdot \Phi(u) \cdot du =$$

$$= n \cdot \sqrt{\frac{m}{2 \cdot \pi \cdot k_{B} \cdot T}} \cdot \int_{0}^{\infty} u \cdot e^{-\frac{m \cdot u^{2}}{2 \cdot k_{B} \cdot T}} du = n \cdot \sqrt{\frac{m}{2 \cdot \pi \cdot k_{B} \cdot T}} \frac{k_{B} \cdot T}{m} =$$


$$= \left| \frac{N}{V} = n = \frac{p}{k_{B} \cdot T} \right| = \left| \frac{p}{m} \cdot \sqrt{\frac{m}{2 \cdot \pi \cdot k_{B} \cdot T}} \right|$$

Areal Impingement Rate V

$$Z = Z(p,T,m) =$$
$$= \frac{p}{m} \cdot \sqrt{\frac{m}{2 \cdot \pi \cdot k_{B} \cdot T}}$$

p = 0.1 Pa $p = 10^{-4} Pa$ $Z = 2.7 \cdot 10^{17} s^{-1} cm^{-2} Z = 2.7 \cdot 10^{14} s^{-1} cm^{-2}$ etwa 270 ML/s etwa 0.2 ML/s

Areal Impingement Rate - Graphic

Types of Vacuum

Name	Pressure [Pa]	Mean free path [mm]	Coverage time O ₂ , 300K [ML/s]
Rough vacuum	Atm→1	5·10 ⁻⁵ →5	2.7·10 ⁵ → 2700
Fine vacuum	1 →0.1	5 →50	2700 → 270
High vacuum (HV)	0.1 →10 ⁻⁵	50→5·10 ⁵	270 → 0.027
Ultra high vacuum (UHV)) 10 ⁻⁵ →10 ⁻¹⁰	5·10 ⁵ →5·10 ¹⁰	0.027 → 2.7·10 ⁻⁷
Extreme UHV (XHV)	<10 ⁻¹⁰	5·10 ¹⁰ →	2.7·10 ⁻⁷ →

5·10⁵ mm ≡ 500 m 5·10¹⁰ mm ≡ 50 000 km (!)

Types of Pumps

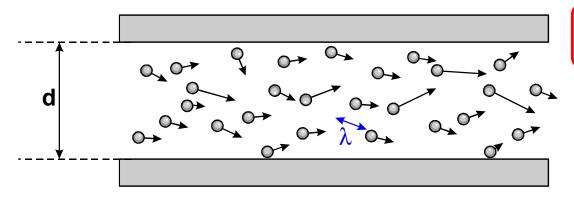
Gas transporting:

- + Rotary pump
- + Diffusion pump
- + Turbomolecular pump

Rough vacuum/fine vacuum High vacuum High vacuum

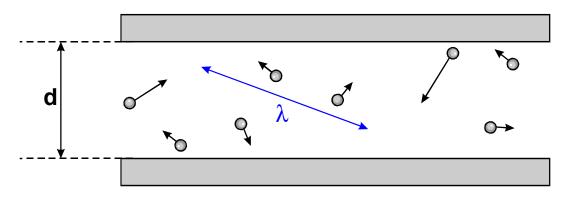
Gas adsorbing:

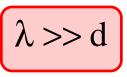
- + Cold traps
- + Cryo pumps
- + Sublimation pumps
- + Getter pumps
 - reactive gases


Fine vacuum High vacuum/UHV UHV UHV

+ lone getter pumps UHV inert molecules (activation)

Flow through a pipe, diameter d:


Laminar/turbulent: Rough vacuum/fine vacuum



Particle collisions probable, global flow

Molecular: High vacuum, UHV

Wall collisions probable, no flow

Flow Types and Pumping Systems

• Efficient in the laminar region:

- + Gas transporting pumps:
 - **Rotary pump**
 - **Ejector pump**
- + Rotary pumps, except Turbomolecular pumps

Efficient in the molecular region :

- + Gas transporting pumps: Diffusion pump Turbomolecular pump
- + Gas adsorbing pumps

Design Criteria for Vacuum Systems

• Mean free path λ :

- + Choice of pump type
- + Pump velocity
- + Dimension of pipe diameters

Areal impingement rate Z:

- + Coverage times (e.g. surface analytics)
- + Impurity content in coatings (ratio of impingement rate of the coating particles and of the background gas particles)

Impurities

Sticking coefficient α:

$$\alpha = 1 - \frac{Z_{\text{Des}}}{Z} \quad \begin{array}{c} z & \dots & p \\ z_{\text{Des}} & \dots & D \end{array}$$

Ipingement rate Desorption rate

● High sticking coefficient α ≈ 1 (Z_{Des} ≈ 0): Reactive gases: O₂ H₂0

Complex carbohydrates (pump oil)

- Low sticking coefficient α << 1 (Z_{Des} ≈ Z): Inert gases:
 - Noble gases
 - N₂
 - CH₄
 - **Carbohydrates without reactive groups**

Impurities: Example

Coating material: Rate AI: Impurity: Sticking coefficient α: Temperture: AI, m = $4.5 \cdot 10^{-26}$ kg 10 nm/s = $3 \cdot 10^{19}$ At/(m²s⁻¹) O₂, m = $5.3 \cdot 10^{-26}$ kg approx. 1 für Al und O₂ 300K

Wanted: Background gas pressure, at which 1% Oxygen is incorporated unto the coating

$$\begin{aligned} \frac{Z_{O_2}}{Z_{A1}} &= 10^{-2} \\ = \frac{1}{3 \cdot 10^{19}} \cdot \frac{p}{m_{O_2}} \cdot \sqrt{\frac{m_{O_2}}{2 \cdot \pi \cdot k_B \cdot T}} \\ p &= 10^{-2} \cdot 3 \cdot 10^{19} \cdot m_{O_2} \cdot \sqrt{\frac{2 \cdot \pi \cdot k_B \cdot T}{m_{O_2}}} = 1.11 \cdot 10^{-5} \text{ Pa} \end{aligned}$$

Design Criteria: Summary

• Mean free path λ :

Influences gas dynamics. Even at rather high pressures (10⁻² Pa) the mean free path reaches the dimensions of average deposition chambers .

Areal impingement rate Z: Crucial for coating purity. The pressure of the background gas has to be at least in the medium high vacuum to guarantee sufficient film purity.